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ABSTRACT

In a search for eclipsing white dwarfs using the Zwicky Transient Facility lightcurves, we identified

a deep eclipsing white dwarf with a dark, substellar companion. The lack of an infrared excess and

an orbital period of 10 hours made this a potential exoplanet candidate. We obtained high-speed

photometry and radial velocity measurements to characterize the system. The white dwarf has a mass

of 0.50± 0.02 M� and a temperature of 10900± 200 K. The companion has a mass of 0.059± 0.004 M�
and a small radius of 0.0783 ± 0.0013 R�. It is one of the smallest transiting brown dwarfs known

and likely old, & 8 Gyr. The ZTF discovery efficiency of substellar objects transiting white dwarfs is

limited by the number of epochs and as ZTF continues to collect data we expect to find more of these

systems. This will allow us to measure period and mass distributions and allows us to understand the

formation channels of white dwarfs with substellar companions.

Keywords: editorials, notices — miscellaneous — catalogs — surveys

1. INTRODUCTION

Substellar objects mainly consist of hydrogen gas and

are not massive enough to fuse hydrogen in their core

(M . MHBL ≈ 0.07 M�; 73 Mjup). Substellar objects

have masses in the range of ∼0.3–73 Mjup and are gen-

erally divided into two classes: brown dwarfs and giant

exoplanets. There is no clear separation based on mass,

but the distinction is based on the formation history

(see Burrows et al. 2001 for an extended discussion).

The formation of a brown dwarf is the same as that

of more massive main-sequence stars: they are formed

Corresponding author: Jan van Roestel

jvanroes@caltech.edu

by gravitational instabilities in gas clouds and have el-

emental abundances similar to that of the interstellar

medium. On the other hand, giant planets are formed

by core accretion in a disk around a protostar, and have

an enhanced metal abundance compared to the host

star. Transit studies (e.g. Carmichael et al. 2021), ra-

dial velocity studies (e.g. Shahaf & Mazeh 2019), and

microlensing observations (e.g. Han et al. 2016; Poleski

et al. 2017) of main-sequence stars show that substellar

objects exist in orbits of ∼ 1 AU. The mass distribu-

tion suggests that there are two distinct populations,

giant planets with masses . 30 Mjup, and brown dwarfs

with masses & 60 Mjup, with a gap in between, the

brown dwarf desert (Marcy & Butler 2000; Grether &

Lineweaver 2006; Sahlmann et al. 2011; Ma & Ge 2014).
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However, recent discoveries by TESS shows that substel-

lar objects do span the entire mass-range (Carmichael

et al. 2020).

At the end of their life, main sequence stars go through

a red-giant phase, which significantly affects nearby sub-

stellar companions (see Grunblatt et al. 2018, for giant

planets around red giants). If a substellar companion

is in a close enough orbit (≈ 200–1000 R�, 1–5 AU for

RGB and AGB giants), the system forms a common-

envelope (Ivanova et al. 2013). While more massive

objects (brown dwarfs and low mass red dwarfs) are

known to survive this process and end up as a short pe-

riod binary (Casewell et al. 2018, 2020b,a), lower mass

substellar companions are predicted to merge during a

common-envelope event or get evaporated as soon as

the hot white dwarf emerges from the common envelope

(Soker 1998; Nelemans & Tauris 1998; Bear & Soker

2011). However, recent work (Lagos et al. 2021) suggest

that giant planet can survive common envelope evolu-

tion. There are also alternative pathways to form short-

period white dwarfs–planets systems, including the for-

mation of second-generation planets from gas around

the white dwarf (e.g. Perets 2010), or capture and/or

inward migration of distant planets (e.g. Stephan et al.

2020).

There are many indications that short-period white

dwarf–planet systems do exist: dust discs have been ob-

served around white dwarfs (e.g. Zuckerman & Becklin

1987); the detection of heavily polluted white dwarfs

(Koester et al. 2014); transiting debris around WD

1145+017 (Vanderburg et al. 2015) and other white

dwarfs (Vanderbosch et al. 2020; Guidry et al. 2020);

and white dwarf WD J0914+1914 which shows accret-

ing material of a Neptune-like composition (Gänsicke

et al. 2019).

There have been many searches for exoplanets tran-

siting white dwarfs, e.g. Faedi et al. (2011); Fulton

et al. (2014); van Sluijs & Van Eylen (2018); Dame et al.

(2019); Rowan et al. (2019), but all of them did not find

any candidates. In addition, Van Grootel et al. (2021)

searched for exoplanets around bright SdB stars, but

were also only able to put an upper limit to the planet

occurrence rate. Vanderburg et al. (2020) discovered a

white dwarf with a substellar companion with an orbital

period of 1.4 days (WD J0914+1914). After carefully

analysing optical and infrared lightcurves of the graz-

ing eclipse, they conclude that the companion is a giant

planet with a mass of . 14Mjup.

The discovery of the giant planet candidate around

WD J0914+1914, which is bright and nearby, suggests

that there are more eclipsing white dwarfs with (low

mass) substellar companions. Because the white dwarf is

small and hot, eclipses of substellar companions around

white dwarfs are deep, and eclipses are the best method

to detect these systems (e.g. Bell 2020; Agol 2011a).

However, eclipses alone are not sufficient to determine

the nature of the object. The radius of substellar ob-

jects is almost invariant of their mass for masses be-

tween 1 Jupiter mass and 0.07M�brown dwarfs (Hatzes

& Rauer 2015), which means the optical eclipse is iden-

tical for a Jupiter mass-object and a brown dwarf. How-

ever, the tidal disruption period is a function of density

(Rappaport et al. 2013, 2021), which means that we can

determine (using mass-radius models) what the mini-

mum mass is. High mass substellar objects have a high

density and can exist in orbital periods as short as 80

minutes, but low mass, low-density Jupiter-like objects

exceed their Roche radius at periods as long as 9 hours

and can only exist at longer periods.

In this paper, we present the discovery and character-

ization of ZTFJ003855.0+203025.5 (ZTFJ0038+2030),

an eclipsing white dwarf with a substellar compan-

ion with an orbital period of 10 hours. To iden-

tify the eclipses, we used the Zwicky Transient Facil-

ity lightcurves (Graham et al. 2019; Bellm et al. 2019;

Masci et al. 2019; Dekany et al. 2020). The system was

identified in a search for deep eclipsing white dwarfs.

We searched the combined PSF-photometry and alert

photometry lightcurves of white dwarfs (Gentile Fusillo

et al. 2019) for deep eclipses and identified the period

using the BLS algoritm (Kovács et al. 2002). For more

details, see van Roestel (2021) and Van Roestel (2021b)

(in prep). ZTFJ0038+2030 showed a complete eclipse in

the g and r band and the eclipse duration is short, con-

sistent with that of a substellar object. It also showed

no excess luminosity in the Gaia HR-diagram and no in-

frared excess in Pan-STARRS colors. Because of these

properties, we prioritised it for followup observations to

determine the nature of the companion.

We obtained followup photometry and spectroscopy

(Section 2), which we used the characterize the system

(Section 3). We present the mass, radius, and tempera-

ture measurements in Section 4. We compare this binary

system with other white dwarfs with substellar compan-

ions, and discuss the implications of this discovery for

future searches for giant exoplanets around white dwarfs

with ZTF. We end with a summary.

2. FOLLOWUP DATA

2.1. CHIMERA fast cadence photometry

We obtained high-speed photometry in the g and z fil-

ters using CHIMERA (see Table 2). CHIMERA (Hard-

ing et al. 2016) is a dual-channel photometer that uses

frame-transfer, electron-multiplying CCDs mounted on
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Table 1. Brightness of ZTFJ0038+2030 in different bands.
Gaia eDR3 data was used (Brown et al. 2020b), with the
geometric distance from Bailer-Jones et al. (2021). ‘V ’ in-
dicates that the magnitudes are in the Vega system, other
magnitudes are in the AB-system.

RA 00h38m55.0s

Dec 20◦30
′
26.1

′′

GV 17.70

BPV 17.76 ± 0.01

RPV 17.63 ± 0.01

parallax 7.19 ± 0.11 mas

distance 138.3+1.7
−1.9 pc

GALEX FUV 20.37 ± 0.24

GALEX NUV 18.58 ± 0.06

ZTF-g 17.70 ± 0.02

ZTF-r 17.78 ± 0.03

ZTF-i 17.95 ± 0.03

PS-g 17.705 ± 0.005

PS-r 17.786 ± 0.002

PS-i 17.931 ± 0.006

PS-z 18.093 ± 0.005

PS-y 18.18 ± 0.02

WISE-W1V 17.87 ± 0.11

WISE-W2V 17.63 ± 0.29

the Hale 200-inch (5.1 m) Telescope at Palomar Obser-

vatory (CA, USA). The pixelscale is 0.28 arcsec/pixel

(unbinned). We used the conventional amplifier and

used 2x2 binning on most nights to reduce the read-

out noise. Each of the images was bias subtracted and

divided by twilight flat fields. We used the ULTRACAM

pipeline to do aperture photometry (Dhillon et al. 2007).

We used an optimal extraction method with a variable

aperture of 1.5 the FWHM of the seeing (as measured

from the reference star). A differential lightcurve was

created by simply dividing the counts of the target by

the counts from the reference star. Timestamps of the

images were determined using a GPS receiver.

2.2. ESI

We used the Echellete Spectrograph and Imager

(ESI, Sheinis et al. 2002) mounted at KeckII to ob-

tain medium-resolution spectra (R ≈ 6000). CuAr arc

exposures were taken at the beginning of the night. The

spectra were reduced using the MAKEE 1 pipeline fol-

lowing the standard procedure: bias subtraction, flat

fielding, sky subtraction, order extraction, and wave-

length calibration.

1 http://www.astro.caltech.edu/∼tb/ipac staff/tab/makee/

2.3. Archival photometry

To be able to study the spectral energy distribu-

tion, we obtained photometry data from multiple other

survey telescopes (see Table 1): Gaia eDR3 (Brown

et al. 2020a), Galex (Bianchi et al. 2017), Pan-STARRS

(Chambers et al. 2016), and WISE (Marocco et al.

2020). We used zero points for each of the filters to

convert the magnitudes to a flux.

3. ANALYSIS

3.1. Ephemeris

We determine the ephemeris by measuring the mid-

eclipse time from the CHIMERA g lightcurve. We then

use the best model from the Chimera g data and use it fit

all ZTF data. In addition, we noticed that there is one

non-detection on 2012-11-1 in Palomar Transient Fac-

tory data (out of 94 observations). We add this epoch

with half the eclipse duration as uncertainty as a prior

(BJDTDB = 2456232.8854±0.0018). This results in an

ephemeris of:

BJD(TDB) = 2459045.985194(2) + 0.431 920 8(14)

(1)

3.2. Spectra and radial velocity amplitude

The spectra show a typical DA white dwarf spectrum

with broad Balmer absorption lines. No features from

the brown dwarf can be seen, including any Balmer emis-

sion due to irradiation (e.g. Parsons et al. 2018).

Radial velocities of the ESI spectra were measured by

fitting a Gaussians, Lorentzians, and polynomials to the

hydrogen lines to cover the continuum, line, and line

core of the individual lines using the FITSB2 routine

(Napiwotzki et al. 2004). The procedure is described in

full detail in Kupfer et al. (2020, 2017a,b). We fitted

the wavelength shifts compared to the rest wavelengths

using a χ2-minimization.

To determine the radial velocity semi-amplitude of

the white dwarf (K1), we fit the radial velocity mea-

surements using a sinusoid with a fixed period and zero

phase based on the ephemeris determined from the ZTF

data. The two remaining free parameters are the am-

plitude (K1) and a systematic velocity (γ). We use the

emcee Foreman-Mackey et al. (2013) to determine the

best value and uncertainty: K1 = 24.2 ± 1.4 km/s (Fig.

2).

3.3. Spectral energy distribution

To determine the white dwarf temperature, we fit the

observed spectral energy distribution with white dwarf

models (see Fig. 1). We use a grid of DA white dwarf
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Table 2. Summary of the followup observations

Date UT Tele./Inst. Nexp Exp. time (s) Wavelength

2020-07-15 11:22 - 11:57 P200/CHIMERA 400 5.0 g

2020-07-15 11:22 - 11:57 P200/CHIMERA 400 5.0 z

2020-07-21 12:18 - 12:39 Keck/ESI/Echellete 2 600 4000 - 10000Å

2020-09-12 12:17 - 12:38 Keck/ESI/Echellete 2 600 4000 - 10000Å

2020-09-12 14:16 - 14:37 Keck/ESI/Echellete 3 600 4000 - 10000Å

1000 2000 5000 10000 20000 50000

Wavelength (Angstrom)

101

102

F
lu

x
(µ

J
y
)

T = 10900± 200 K
dist=139± 2 pc

Figure 1. The spectral energy distribution of the system. Markers show Galex, Gaia DR3, Pan-STARRS, median ZTF gri,
and WISE data. Open markers indicate data not used to constrain the fit. The grey solid line shows the best-fit DA white
dwarf model. The dotted line shows the SED of the best-fit DA model with a 900 K brown dwarf model added.

models by Koester (2009) and use bilinear interpola-

tion to be able to generate a model for any tempera-

ture and surface gravity value. We use the extinction

law by Fitzpatrick (1999) to account for any dust ex-

tinction. To compare the model spectra with the data,

we convolve the model spectra with the filter response

curves2 (Rodrigo et al. 2012; Rodrigo & Solano 2020).

We use Gaussian priors on the parallax using the Gaia

eDR3 data, the radius estimate from the lightcurve,

and an EBV value from Pan-STARRS extinction esti-

mates (Green et al. 2018). We again use emcee to es-

timate the best-fit values and uncertainties. Using this

method, we estimate the white dwarf temperature to be:

TWD = 10900 ± 200 K (Fig. 1).

3.4. Lightcurve modelling

We modelled the high cadence lightcurves using the

package ellc (Maxted 2016). We use a spherical star to

model the white dwarf, and use a Roche-lobe geometry

for the companion. The free parameters for this model

2 http://svo2.cab.inta-csic.es/theory/fps/

are the mid-eclipse time (t0), inclination (i), mass-ratio

(q), the radii divided by the semi-major axis of both

objects (r1,2 ≡ R1,2/a), the semi-major axis (a), and

the surface brightness ratio (Jg,z).

We used a number of fixed parameters in the binary

model. First, we use the orbital period obtained from

the ZTF data (Section 3.1). For limb-darkening of the

white dwarf we the values for T=10 000 K and log(g) =

8.0 as calculated by (Claret et al. 2020).

In addition, we imposed two restrictions on the white

dwarfs. The first is that it cannot be smaller than a

zero-temperature white dwarf. The second constrain is

a Gaussian prior on the white dwarf radius relative to

the white dwarf M-R relation with an uncertainty of 5%.

We use the approximation of the mass-radius relation

of Eggleton from Rappaport et al. (1989). As a final

constraint, we use a Gaussian prior on the radial velocity

amplitude (K1) of the white dwarf (see Section 3.2).

To find most probable parameter values and uncer-

tainties, we again use emcee.

4. RESULTS

http://svo2.cab.inta-csic.es/theory/fps/
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Figure 2. The top left panel shows the ZTF gri data (green, red, purple) folded to the period. The bottom left panel shows the
ESI radial velocity measurements. The best-fit radial velocity curve is overplotted, with in grey the the 1-standard deviation,
and the dotted line indicates the systematic velocity. The right two panels show the CHIMERA g (top) and z data (bottom)
with the best-fit lcurve model overplotted.

We measured the binary properties by analysing the

spectral energy distribution, ZTF lightcurves, phase-

resolved spectroscopy, and high cadence g- and z-band

lightcurves. The results are summarized in Table 4 and

the posterior of the lightcurve modelling is shown in the

appendix (Fig. 4).

The mass of the companion, which is mostly set

by the radial velocity semi-amplitude measurement,

is M2 = 0.0593 ± 0.004M�, and a radius of R2 =

0.0783 0.0013
−0.0011R�. This is consistent with a brown dwarf.

Using the z-band surface brightness ratio, we estimate

that the temperature of the brown dwarf is . 1550 K.

The mass of the white dwarf is 0.50±0.02 M�, which is

typical for a white dwarf (Kepler et al. 2007). The white

dwarf radius (R1 = 0.01429 ± 0.00020 R�) is consistent

with the white dwarf M-R relation, which is what we

enforced with a prior. The temperature of the white

dwarf is T1 = 10900 ± 200 K.

The orbital separation of the binary system is a =

1.987 ± 0.027R� and the inclination of this system is

i = 89.71± 0.13◦. The corresponding impact parameter

is b . 0.18.

5. DISCUSSION

5.1. The nature of the substellar companion

In Fig. 3, we plot the mass and radius of the compan-

ion, and compare it to models by Marley et al. (2018).

The measured mass and radius agree with models of 10

Gyr old brown dwarfs with Z & 0 abundances. The

models predict a temperature of ∼800–900 K, which is

well below the upper limit we determined from the z-

band surface brightness ratio. In Fig. 1 we plot the best

fit white dwarf spectrum with the spectrum of a 900 K

brown dwarf added. Such a low temperature is consis-

tent with the lack of any excess emission in the WISE

bands. If we assume a solar abundance or lower, the

age of the brown dwarf (and therefore the system) is

& 8 Gyr.

Compared to other substellar objects that are eclips-

ing white dwarfs, the mass and radius do not stand out
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Figure 3. The characteristics of substellar companions that are eclipsing white dwarfs (black markers). The parameters of
the other eclipsing white dwarfs with substellar companions are taken from Vanderburg et al. (2020), Casewell et al. (2020b),
Parsons et al. (2018), Littlefair et al. (2014). Grey points show brown dwarfs and giant planets around other stellar types taken
Carmichael et al. (2021) and Chen & Kipping (2017). The top panel shows the orbital period versus the mass. The lower-left
region is off-limits as the object would exceeds the Roche-limit (Rappaport et al. 2013). Low-mass objects close to hot white
dwarfs are also affected by photo-evaporation (Soker 1998; Nelemans et al. 2004; Bear & Soker 2011). The bottom panel shows
the radius versus the mass. The white dwarf temperature is indicated next to each marker. Models are taken from Marley et al.
(2018). Uncertainties for low mass objects are omitted for clarity.
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Table 3. The binary parameters are determined by mod-
elling the lightcurves using ellc. The top section lists model
parameters, the bottom part shows derived parameters. We
fixed the orbital period (f ), and for the radius of the white
dwarf (R1) and radial velocity amplitude (K1) we used a
prior (p). We use the 95% percentile to determine upperlim-
its.

pf (d) 0.431 920 8 (14)

t0 (BJDTBD) 2459045.985194(2)

q 0.1167+0.0075
−0.0068

i (◦) 89.71+0.12
−0.13

r1 0.007195+0.000075
−0.000078

r2 0.03934+0.00033
−0.00019

a (R�) 1.987+0.030
−0.022

Jg . 0.000035

Jz . 0.00014

M1 (M�) 0.505+0.024
−0.018

M2 (M�) 0.0593+0.0036
−0.0039

Rp
1 (R�) 0.01429+0.00022

−0.00017

R2 (R�) 0.0783+0.0013
−0.0011

log(g1) (cgs) 7.832+0.013
−0.013

log(g2) (cgs) 5.425+0.02
−0.03

Kp
1 (km/s) 24.4+1.4

−1.4

K2 (km/s) 208.4+3.7
−2.9

ρ2 (g/cm3) 174+9
−11

and are similar to other brown dwarfs. This object does

stand out because of its orbital period, which at 10 hours

is an order of magnitude larger than the three other

known brown dwarfs orbiting white dwarfs. This means

that the amount of irradiation by the white dwarf is

relatively low. Using a simple blackbody approximation

(Littlefair et al. 2014), we estimate that the temperature

of the brown dwarf is only increased by ∼50 K due to ir-

radiation by the white dwarf. This fact, and the systems

relative brightness, make this system a good prototype

system for long period white dwarf brown dwarf systems.

5.2. Formation history

Since the companion is a brown dwarf and not a gi-

ant planet, standard common envelope evolution can ex-

plain the formation of this system. Given that the mass

the white dwarf is ≥ 0.47 M� the white dwarf has very

likely a CO core (see e.g. Marigo 2013 and also Par-

sons et al. 2017 for observational evidence) which allows

for two formation scenarios. In the first scenario, the

white dwarf could have formed during a common enve-

lope phase on the Asymptotic Giant branch (AGB) after

helium core exhaustion. The second scenario is that the

common envelope happened at the tip of the Red giant

branch (RGB), just after the helium flash (Han et al.

2003) which would result in a white dwarf with a mass

close to 0.47 M�. In that scenario the white dwarf would

have after the common envelope evolved into a hot sub-

dwarf (sdB) and appeared as an HW Vir system before

it evolved into a white dwarf with a brown dwarf com-

panion after helium exhaustion in the sdB. Several sdB

+ brown dwarf systems are known, although typically

seen with shorter orbital periods (e.g. Geier et al. 2011;

Schaffenroth et al. 2015, 2018, 2019).

The initial to final mass relation for the white dwarfs

suggests that the white dwarf progenitor was approxi-

mately a 1–2 M� main-sequence star. This corresponds

to a main-sequence lifetime of 10–2 Gyr (Catalán et al.

2008; Marigo 2013; Cummings et al. 2018). The cool-

ing age of the white dwarf is approximately ∼400 Myr

(Koester 2009). This is consistent with the age estimate

based on the brown dwarf radius.

The white dwarf will slowly cool down and the pe-

riod will slowly decrease due to gravitational wave radi-

ation. It will take ∼135 Gyr to reach an orbital period of

∼40 minutes (Rappaport et al. 2021), at which point the

white dwarf will be ∼1000 K. Roche-lobe overflow will

commence and system becomes a cataclysmic variable

(Littlefair et al. 2003). The accretion flow will heat up

the white dwarf again while the period increases. This

will slowly drain the brown dwarf and the system ends

up as a ‘period-bouncer’; a very low accretion rate CV

with an orbital period of ≈90 minutes (e.g Pala et al.

2018).

5.3. Implications for searches for giant planets

transiting white dwarfs with ZTF

Here, we briefly discuss the detection efficiency of our

search and the occurrence rate of white dwarfs with tran-

siting substellar objects. A detailed simulation is beyond

the scope of this paper and we limit ourselves to an order

of magnitude estimate only.

To find ZTFJ0038+2030 we searched the ZTF

lightcurves of the Gaia white dwarf catalog by Gen-

tile Fusillo et al. (2019) which contains 486 641 candi-

date white dwarf over the entire sky. There are 129 148

white dwarf brighter than 20 mag with more than 80

epochs in their ZTF lightcurve. Based on the number

of epochs in these lightcurves, we estimate an average

recovery efficiency of 15-25% (simply the probability of

getting 7-5 in-eclipse points). We note that we recov-

ered the other three eclipsing WD-BD systems in Fig.

3.

With the discovery of ZTFJ0038+2030 and the dis-

covery by Vanderburg et al. (2020), there are now two

known long-period (& 10 h) transiting substellar objects

around a white dwarfs; the first most likely a giant

planet and the second most likely a brown dwarf. This
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suggests that, at longer orbital periods, the occurrence

rate is the same order of magnitude. More systems need

to be found and characterized in order to determine the

mass distribution and determine which of the formation

channels are important in the formation of these objects.

Currently, the ZTF detection efficiency is limited by

the number of epochs available per white dwarf. As

more epochs are obtained, ZTF will be able to identify

narrower eclipses, which means that longer period sys-

tems can be identified. Based on the recovery efficiency

of ZTFJ0038+2030 we estimate that ZTF will find an-

other 3 − 6 similar objects as it keeps on accumulating

more data. Other surveys like Gaia, ATLAS, and Black-

GEM can be used to find similar systems over the whole

sky. In the near future, the Vera C. Rubin observatory

(Ivezic̀ et al. 2019) will find many more white dwarfs

with exoplanets, possibly down to earth-sized objects

(Agol 2011b).

6. SUMMARY AND CONCLUSION

Using ZTF photometry, and Gaia and Pan-STARRS

data, we discovered an eclipsing binary composed of a

white dwarf and a substellar companion with an orbital

period of 10 hours. We used follow-up photometry and

spectroscopy to measure the binary parameters. This

shows that the substellar companion is an & 8Gyr old

brown dwarf with a mass of 0.06M�, and the white

dwarf a 0.50M�, CO white dwarf. The system is rel-

atively bright, and a good prototype system where the

brown dwarf suffers minimal irradiation. It is also a use-

ful target for eclipse timing to find circum-binary objects

(e.g. NNser, Marsh et al. 2014) as brown dwarf are not

expected to show eclipse time variations due to Apple-

gate’s mechanism (Applegate 1992; Bours et al. 2016).
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Figure 4. The posterior distribution of the fit to the lightcurve data using ellc and emcee.

Facilities: P48(ZTF), P200:5.0m (CHIMERA),

Keck2:10m (ESI),

Software: astropy (Astropy Collaboration et al.

2013b), Makee, ellc (Maxted et al. 2014), scipy, emcee

(Foreman-Mackey et al. 2013)

APPENDIX
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