Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 6, 2021

Diagnostic algorithms for non-ST-segment elevation myocardial infarction: open issues

  • Aldo Clerico EMAIL logo , Alberto Aimo , Martina Zaninotto and Mario Plebani ORCID logo

Abstract

The use of serial measurement of cardiac troponin (cTn) is recommended by international guidelines for the diagnosis of myocardial infarction (MI) since 2000. This article focuses on factors influencing temporal changes in high-sensitive cTn (hs)-cTn and the impact of these factors on the diagnosis of non-ST-segment elevation MI (NSTEMI). The recommendations proposed by three different international guidelines published in 2020–2021 for the management of acute coronary syndromes (ACS) in patients presenting without persistent ST-segment elevation (NSTE) show some discrepancies. In particular, there is no agreement among these guidelines about cut-off or absolute change values to be used for the rule-in, especially regarding the use of sex-specific cut-off values. Furthermore, there are no sufficient evidences on the diagnostic accuracy and cost effectiveness related to cut-off values suggested for algorithms to be used by some hs-cTnI methods.


Corresponding author: Professor Aldo Clerico, MD, Department of Laboratory Medicine, Laboratory of Cardiovascular Endocrinology and Cell Biology, Fondazione CNR Toscana G. Monasterio, Scuola Superiore Sant’Anna, Via Trieste 41, 56126 Pisa, Italy, E-mail:

  1. Research funding: None declared.

  2. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: Authors state no conflict of interest.

  4. Informed consent: Not applicable.

  5. Ethical approval: Not applicable.

References

1. Alpert, JS, Thygesen, K, Antman, E, Bassand, JP. Myocardial infarction redefined: a consensus document of the Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction. J Am Coll Cardiol 2000;36:959–69. https://doi.org/10.1016/s0735-1097(00)00804-4.Search in Google Scholar

2. Clerico, A, Zaninotto, M, Ripoli, M, Masotti, S, Prontera, C, Passino, C, et al.. The 99th percentile of reference population for cTnI and cTnT assay: methodology, pathophysiology, and clinical implications. Clin Chem Lab Med 2017;55:1634–51. https://doi.org/10.1515/cclm-2016-0933.Search in Google Scholar

3. Clerico, A, Zaninotto, M, Padoan, A, Masotti, S, Musetti, V, Prontera, C, et al.. Evaluation of analytical performance of immunoassay methods for cardiac troponin I and T: from theory to practice. Adv Clin Chem 2019;93:239–62. https://doi.org/10.1016/bs.acc.2019.07.005.Search in Google Scholar

4. Wu, AHB, Christenson, RH, Greene, DN, Jaffe, AS, Kavsak, PA, Ordonez-Lianos, J, et al.. Clinical laboratory practice recommendations for the use of cardiac troponin in acute coronary syndrome: expert opinion from the Academy of the American Association for Clinical Chemistry and the Task Force on Clinical Applications of Cardiac Bio-Markers of the International Federation of Clinical Chemistry and Laboratory Medicine. Clin Chem 2018;64:645–55. https://doi.org/10.1373/clinchem.2017.277186.Search in Google Scholar

5. Thygesen, K, Alpert, JS, Jaffe, AS, Chaitman, BR, Bax, JJ, Morrow, DA, et al.. Fourth universal definition of myocardial infarction. J Am Coll Cardiol 2018;72:2231–64. https://doi.org/10.1016/j.jacc.2018.08.1038.Search in Google Scholar

6. Thygesen, K. What’s new in the Fourth universal definition of myocardial infarction? Eur Heart J 2018;39:3757–58. https://doi.org/10.1093/eurheartj/ehy655.Search in Google Scholar

7. Valentine, CM, Tcheng, JE, Waites, T. Translating the translation. What clinicians should know about the Fourth universal definition of myocardial infarction. J Am Coll Cardiol 2018;72:2668–70. https://doi.org/10.1016/j.jacc.2018.10.015.Search in Google Scholar

8. Januzzi, JL, Mahler, S, Christenson, RH, Rymer, J, Newby, LK, Body, R, et al.. Recommendations for institutions transitioning to high-sensitivity troponin testing. JACC Scientific Expert Panel. J Am Coll Cardiol 2019;73:1059–77. https://doi.org/10.1016/j.jacc.2018.12.046.Search in Google Scholar

9. Farmakis, D, Mueller, C, Apple, FS. High-sensitivity cardiac troponin assays for cardiovascular risk stratification in the general population. Eur Heart J 2020;41:4050–6. https://doi.org/10.1093/eurheartj/ehaa083.Search in Google Scholar

10. Clerico, A, Zaninotto, M, Passino, C, Aspromonte, N, Piepoli, MF, Migliardi, M, et al.. Evidence on clinical relevance of cardiovascular risk evaluation in the general population using cardio-specific biomarkers. Clin Chem Lab Med 2020;59:79–90. https://doi.org/10.1515/cclm-2020-0310.Search in Google Scholar

11. Collet, JP, Thiele, H, Barbato, E, Barthélémy, O, Bauersachs, J, Bhatt, DL, et al.. 2020 ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J 2021;42:1289–367. https://doi.org/10.1093/eurheartj/ehaa575.Search in Google Scholar

12. Body, R, Collinson, P, Mills, N, Reid, A, Timmis, A. Diagnostics guidance [DG40] Diagnostics Assessment Committee National Institute for Health and Care Excellence. High-sensitivity troponin tests for the early rule out of NSTEMI. NICE 2020:1–42. ISBN: 978-1-4731-3863-6.Search in Google Scholar

13. Apple, FS, Collinson, PO, Kavsak, PA, Body, R, Ordóñez-Llanos, J, Saenger, AK, et al.. Getting cardiac troponin right: appraisal of the 2020 European Society of Cardiology guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation by the International Federation of Clinical Chemistry and Laboratory Medicine Committee on Clinical Applications of Cardiac Bio-Markers. Clin Chem 2021;67:730–5. https://doi.org/10.1093/clinchem/hvaa337.Search in Google Scholar

14. Fraser, CG. Biological variation: from principle to practice. Chapter 3. Washington DC, USA: AACC Press; 2001:67–90 pp.Search in Google Scholar

15. Fraser, CG. Reference change values. Clin Chem Lab Med 2011;50:807–12. https://doi.org/10.1515/CCLM.2011.733.Search in Google Scholar

16. Clerico, A, Ripoli, A, Zaninotto, M, Masotti, S, Musetti, V, Ciaccio, M, et al.. Head-to-head comparison of plasma cTnI concentration values measured with three high-sensitivity methods in a large Italian population of healthy volunteers and patients admitted to emergency department with acute coronary syndrome: a multi-center study. Clin Chim Acta 2019;496:25–34. https://doi.org/10.1016/j.cca.2019.06.012.Search in Google Scholar

17. Franzini, M, Lorenzoni, V, Masotti, S, Prontera, C, Chiappino, D, Della Latta, D, et al.. The calculation of the cardiac troponin T 99th percentile of the reference population is affected by age, gender, and population selection: a multicenter study in Italy. Clin Chim Acta 2015;438:376–81. https://doi.org/10.1016/j.cca.2014.09.010.Search in Google Scholar

18. Masotti, S, Musetti, V, Pronetra, C, Storti, S, Passino, C, Clerico, A. Evaluation and comparison with other high-sensitivity methods of analytical performance and measured values of a new laboratory test for cardiac troponin I assay. J Appl Lab Med 2021 Apr 8. https://doi.org/10.1093/jalm/jfab017 [Epub ahead of print].Search in Google Scholar

19. Clerico, A, Padoan, A, Zaninotto, M, Passino, C, Plebani, M. Clinical relevance of biological variation of cardiac troponins. Clin Chem Lab Med 2021;59:641–52. https://doi.org/10.1515/cclm-2020-1433.Search in Google Scholar

20. Giannoni, A, Giovannini, S, Clerico, A. Measurement of circulating concentrations of cardiac troponin I and T in healthy subjects: a tool for monitoring myocardial tissue renewal? Clin Chem Lab Med 2009;47:1167–77. https://doi.org/10.1515/CCLM.2009.320.Search in Google Scholar

21. Marjot, J, Kaier, TE, Martin, ED, Reji, SS, Copeland, O, Iqbal, M, et al.. Quantifying the release of biomarkers of myocardial necrosis from cardiac myocytes and intact myocardium. Clin Chem 2017;63:990–6. https://doi.org/10.1373/clinchem.2016.264648.Search in Google Scholar

22. Mair, J, Lindahl, B, Hammarsten, O, Müller, C, Giannitsis, E, Huber, K, et al.. How is cardiac troponin released from injured myocardium? Eur Heart J Acute Cardiovasc Care 2018;6:553–60. https://doi.org/10.1177/2048872617748553.Search in Google Scholar

23. Hickman, PE, Koerbin, G, Potter, JM, Abhayaratna, WP. Statistical considerations for determining high-sensitivity cardiac troponin reference intervals. Clin Biochem 2017;50:502–5. https://doi.org/10.1016/j.clinbiochem.2017.02.022.Search in Google Scholar

24. Sandoval, Y, Apple, FS. The global need to define normality: the 99th percentile value of cardiac troponin. Clin Chem 2014;60:455–62. https://doi.org/10.1373/clinchem.2013.211706.Search in Google Scholar

25. Buja, LM, Vela, D. Cardiomyocyte death and renewal in the normal and diseased heart. Cardiovasc Pathol 2008;17:349–74. https://doi.org/10.1016/j.carpath.2008.02.004.Search in Google Scholar

26. Lázár, E, Sadek, HA, Bergmann, O. Cardiomyocyte renewal in the human heart: insights from the fall-out. Eur Heart J 2017;38:2333–42. https://doi.org/10.1093/eurheartj/ehx343.Search in Google Scholar

27. Hickman, PE, Potter, JM, Aroney, C, Koerbin, G, Southcott, E, Wu, AH, et al.. Cardiac troponin may be released by ischemia alone, without necrosis. Clin Chim Acta 2010;411:318–23. https://doi.org/10.1016/j.cca.2009.12.009.Search in Google Scholar

28. Cardinaels, EP, Mingels, AM, van Rooij, T, Collinson, PO, Prinzen, FW, van Dieijen-Visser, MP. Time-dependent degradation pattern of cardiac troponin T following myocardial infarction. Clin Chem 2031;59:1083–890.10.1373/clinchem.2012.200543Search in Google Scholar PubMed

29. Vroemen, VHM, Mezger, SRP, Masotti, S, Clerico, A, Beckers, O, de Boer, O, et al.. Cardiac troponin T: only small molecules in recreational runners after marathon completion. J Appl Lab Med 2019;3:909–11. https://doi.org/10.1373/jalm.2018.027144.Search in Google Scholar

30. Mingels, AM, Cardinaels, EP, Broers, NJ, van Sleeuwen, A, Streng, AS, van Dieijen-Visser, NP, et al.. Cardiac troponin T: smaller molecules in patients with end-stage renal disease than after onset of acute myocardial infarction. Clin Chem 2017;63:683–90. https://doi.org/10.1373/clinchem.2016.261644.Search in Google Scholar

31. Eijsvogels, TMH, Fernandez, AB, Thompson, PG. Are there deleterious cardiac effects of acute and chronic endurance exercise? Physiol Rev 2016;96:99–125. https://doi.org/10.1152/physrev.00029.2014.Search in Google Scholar

32. Aakre, KM, Omland, T. Physical activity, exercise and cardiac troponins: clinical implications. Prog Cardiovasc Dis 2019;62:108–15. https://doi.org/10.1016/j.pcad.2019.02.005.Search in Google Scholar

33. Baker, P, Leckie, T, Harrington, D, Richardson, A. Exercise-induced cardiac troponin elevation: an update on the evidence, mechanism and implications. Int J Cardiol Heart Vasc 2019;22:181–6. https://doi.org/10.1016/j.ijcha.2019.03.001.Search in Google Scholar

34. Neumann, JT, Twerenbold, R, Ojeda, F, Sörensen, NA, Chapman, AR, Shah, ASV, et al.. Application of high-sensitivity troponin in suspected myocardial infarction. N Engl J Med 2019;380:2529–40. https://doi.org/10.1056/NEJMoa1803377.Search in Google Scholar

35. Twerenbold, R, Badertscher, P, Boeddinghaus, J, Nestelberger, T, Wildi, K, Puelacher, C, et al.. 0/1-h triage algorithm for myocardial infarction in patients with renal dysfunction. Circulation 2018;137:436À451. https://doi.org/10.1161/circulationaha.117.028901.Search in Google Scholar

36. Boeddinghaus, J, Nestelberger, T, Twerenbold, R, Neumann, JT, Lindahl, B, Giannitsis, E, et al.. Impact of age on the performance of the ESC 0/1 h algorithms for early diagnosis of myocardial infarction. Eur Heart J 2018;39:3780–94. https://doi.org/10.1093/eurheartj/ehy514.Search in Google Scholar

37. Boeddinghaus, J, Twerenbold, R, Nestelberger, T, Koechlin, L, Wussler, D, Meier, M, et al.. Clinical validation of a novel high-sensitivity cardiac troponin I assay for early diagnosis of acute myocardial infarction. Clin Chem 2018;64:1347–60. https://doi.org/10.1373/clinchem.2018.286906.Search in Google Scholar

38. Mueller, C, Giannitsis, E, Christ, M, Ordóñez-Llanos, J, deFilippi, C, McCord, J, et al.. Multicenter evaluation of a 0/1-h algorithm in the diagnosis of myocardial infarction with high-sensitivity cardiac troponin T. Ann Emerg Med 2016;68:76–87 e74. https://doi.org/10.1016/j.annemergmed.2015.11.013.Search in Google Scholar

39. Neumann, JT, Sorensen, NA, Schwemer, T, Ojeda, F, Bourry, R, Sciacca, V, et al.. Diagnosis of myocardial infarction using a high-sensitivity troponin I 1-hour algorithm. JAMA Cardiol 2016;1:397–404. https://doi.org/10.1001/jamacardio.2016.0695.Search in Google Scholar

40. Twerenbold, R, Neumann, JT, Sörensen, NA, Ojeda, F, Karakas, M, Boeddinghaus, J, et al.. Prospective validation of the 0/1-h algorithm for early diagnosis of myocardial infarction. J Am Coll Cardiol 2018;72:620–32. https://doi.org/10.1016/j.jacc.2018.05.040.Search in Google Scholar

41. Stoyanov, KM, Hund, H, Biener, M, Gandowitz, J, Riedle, C, Löhr, J, et al.. RAPID-CPU: a prospective study on implementation of the ESC 0/1-h algorithm and safety of discharge after rule-out of myocardial infarction. Eur Heart J Acute Cardiovasc Care 2020;9:39–51. https://doi.org/10.1177/2048872619861911.Search in Google Scholar

42. Badertscher, P, Boeddinghaus, J, Twerenbold, R, et al.. Comparison of the efficacy and safety of early rule-out pathways for acute myocardial infarction. Circulation 2017;135:1586–96.10.1161/CIRCULATIONAHA.116.025021Search in Google Scholar PubMed PubMed Central

43. Chapman, AR, Anand, A, Boeddinghaus, J, Ferry, AV, Sandeman, D, Adamson, PD, et al.. Comparison of the efficacy and safety of early rule-out pathways or acute myocardial infarction. Circulation 2017;135:1586–96. https://doi.org/10.1161/circulationaha.116.025021.Search in Google Scholar

44. Chapman, AR, Fujisawa, T, Lee, KK, Andrews, JP, Anand, A, Sandeman, D, et al.. Novel high-sensitivity cardiac troponin I assay in patients with suspected acute coronary syndrome. Heart 2019;105:616–22. https://doi.org/10.1136/heartjnl-2018-314093.Search in Google Scholar

45. Reichlin, T, Schindler, C, Drexler, B, Twerenbold, R, Reiter, M, Zellweger, C, et al.. One-hour rule-out and rule-in of acute myocardial infarction using high-sensitivity cardiac troponin T. Arch Intern Med 2012;172:1211–18. https://doi.org/10.1001/archinternmed.2012.3698.Search in Google Scholar

46. Lee, KK, Ferry, A, Anand, A, Strachan, F, Chapman, AR, Kimenai, DM, et al.. High-sensitivity troponin with sex-specific thresholds in suspected acute coronary syndrome. J Am Coll Cardiol 2019;74:2032–43.10.1016/j.jacc.2019.07.082Search in Google Scholar PubMed PubMed Central

47. Apple, FS, Wu, AHB, Sandoval, Y, Sexter, A, Love, SA, Myers, G, et al.. Sex-specific 99th percentile upper reference limits for high sensitivity cardiac troponin assays derived using a universal sample bank. Clin Chem 2020;66:434–44. https://doi.org/10.1093/clinchem/hvz029.Search in Google Scholar

48. Shah, A, Griffiths, M, Lee, KK, McAllister, MA, Hunter, AL, Cruikshank, A, et al.. High-sensitivity cardiac troponin and the under diagnosis of myocardial infarction in women. Br Med J 2015;350:1–8. https://doi.org/10.1136/bmj.h626.Search in Google Scholar

49. Eggers, KM, Lindahl, B. Impact of sex on cardiac troponin concentrations—a critical appraisal. Clin Chem 2017;63:1457–64. https://doi.org/10.1373/clinchem.2017.271684.Search in Google Scholar

50. Cullen, L, Greenslade, JH, Carlton, EW, Than, M, Pickering, JW, Ho, A, et al.. Sex-specific vs. overall cut points for a high sensitivity troponin I assay in predicting one-year outcomes in emergency patients presenting with chest pain. Heart 2016;102:120–6. https://doi.org/10.1136/heartjnl-2015-308506.Search in Google Scholar

51. Kimenai, DM, Appelman, Y, den Ruijter, HM, Shah, ASV, Mills, NL, Meex, SJR. Ten years of high-sensitivity troponin testing: impact on the diagnosis of myocardial infarction. Clin Chem 2020 Nov 30. https://doi.org/10.1093/clinchem/hvaa272 [Epub ahead of print].Search in Google Scholar

52. Bjurman, C, Larsson, M, Johanson, P, Petzold, M, Lindahl, B, Fu, MLX, et al.. Small changes in troponin T levels are common in patients with non–ST-segment elevation myocardial infarction and are linked to higher mortality. J Am Coll Cardiol 2013;62:1231–8. https://doi.org/10.1016/j.jacc.2013.06.050.Search in Google Scholar

53. Faxon, DP. Early reperfusion strategies after acute ST-segment elevation myocardial infarction: the importance of timing. Nat Clin Pract Cardiovasc Med 2005;2:22–8. https://doi.org/10.1038/ncpcardio0065.Search in Google Scholar

54. Goldstein, P, Lapostolle, F, Steg, G, Danchin, N, Assez, N, Montalescot, G, et al.. Lowering mortality in ST-elevation myocardial infarction and non-ST-elevation myocardial infarction: key prehospital and emergency room treatment strategies. Eur J Emerg Med 2009;16:244–56. https://doi.org/10.1097/mej.0b013e328329794e.Search in Google Scholar

55. Sandoval, Y, Smith, SW, Love, SA, Sexter, A, Schulz, K, Apple, FS. Single high-sensitivity cardiac troponin I to rule out myocardial infarction. Am J Med 2017;130:1076–83. https://doi.org/10.1016/j.amjmed.2017.02.032.Search in Google Scholar

56. Neumann, JT, Twerenbold, R, Ojeda, F, Sorensen, NA, Chapman, AR, Shah, ASV, et al.. Application of high sensitivity cardiac troponin to rule out myocardial infarction. N Engl J Med 2019;380:2529–40.10.1056/NEJMoa1803377Search in Google Scholar

57. Shah, ASV, Anand, A, Strachan, FE, Ferry, AV, Lee, KK, Chapman, AR, et al.. High-sensitivity troponin in patients with suspected acute coronary syndrome. Lancet 2018;392:919–28.10.1016/S0140-6736(18)31923-8Search in Google Scholar

58. Sandoval, Y, Nowak, R, deFilippi, CR, Christenson, RH, Peacock, WF, McCord, J, et al.. Myocardial infarction risk stratification with a single measurement of high sensitivity troponin I. J Am Coll Cardiol 2019;74:271–82. https://doi.org/10.1016/j.jacc.2019.05.058.Search in Google Scholar

59. Body, R, Morris, N, Collinson, P. Single test rule out of acute myocardial infarction using the limit of detection of a new high-sensitivity troponin I assay. Clin Biochem 2020;78:4–9. https://doi.org/10.1016/j.clinbiochem.2020.02.014.Search in Google Scholar

60. Mair, J, Lindhal, B, Müller, C, Giannitsis, E, Huber, K, Möckel, M, et al.. Editor’s choice-what to do when you question cardiac troponin values. Eur Heart J Acute Cardiovasc Care 2018;7:577–86. https://doi.org/10.1177/2048872617708973.Search in Google Scholar

61. Michielsen, ECHJ, Diris, JHC, Kleijnen, VWVC, Wodzig, WK, Van Dieijen-Visser, MP. Investigation of release and degradation of cardiac troponin T in patients with acute myocardial infarction. Clin Biochem 2007;40:851–5. https://doi.org/10.1016/j.clinbiochem.2007.04.004.Search in Google Scholar

62. Labugger, R, Organ, L, Collier, C, Atar, D, Van Eyk, JE. Extensive troponin I and troponin T modification detected in serum from patients with acute myocardial infarction. Circulation 2000;102:1221–6. https://doi.org/10.1161/01.cir.102.11.1221.Search in Google Scholar

63. Park, KC, Gaze, DC, Collinson, PO, Marber, MS. Cardiac troponins: from myocardial infarction to chronic disease. Cardiovasc Res 2017;113:1708–18. https://doi.org/10.1093/cvr/cvx183.Search in Google Scholar

64. Árnadóttir, Á, Pedersen, S, Hasselbalch, RB, Goetze, JP, Friis-Hansen, LJ, Bloch-Münster, AM, et al.. Temporal release of high-sensitivity cardiac troponin T and I and copeptin after brief induced coronary artery balloon occlusion in humans. Circulation 2021;143:1095–104. https://doi.org/10.1161/circulationaha.120.046574.Search in Google Scholar

65. Sandoval, Y, Chapman, AR, Mills, NL, Than, M, Pickering, JW, Worster, A, et al.. Sex-specific kinetics of high-sensitivity cardiac troponin I and T following symptom onset and early presentation in non-ST-segment elevation myocardial infarction. Clin Chem 2021;67:321–4. https://doi.org/10.1093/clinchem/hvaa263.Search in Google Scholar

66. Pickering, JW, Young, JM, George, PM, Pemberton, CJ, Watson, A, Aldous, SJ, et al.. Early kinetic profiles of troponin I and T measured by high-sensitivity assays in patients with myocardial infarction. Clin Chim Acta 2020;505:15–25. https://doi.org/10.1016/j.cca.2020.02.009.Search in Google Scholar

67. Monneret, D, Fasiolo, M, Bonnefont-Rousselot, D. Relationships between renal function variations and relative changes in cardiac troponin T concentrations based on quantile generalized additive models (qgam). Clin Chem Lab Med 2021;59:1115–25. https://doi.org/10.1515/cclm-2020-0820.Search in Google Scholar

68. Thorsteinsdottir, I, Aspelund, T, Gudmundsson, E, Eiriksdottir, G, Harris, TB, Launer, LJ, et al.. High-sensitivity cardiac troponin I is a strong predictor of cardiovascular events and mortality in the AGES-Reykjavik community-based cohort of older individuals. Clin Chem 2016;62:623–30. https://doi.org/10.1373/clinchem.2015.250811.Search in Google Scholar

69. Van der Linden, N, Klinkenberg, LJ, Bekers, O, van Loon, LJC, van Dieijen-Visser, MP, Zeegers, MP, et al.. Prognostic value of basal high-sensitive cardiac troponin levels on mortality in the general population: a meta-analysis. Medicine 2016;95:e5703. https://doi.org/10.1097/md.0000000000005703.Search in Google Scholar

70. Blankenberg, S, Salomaa, V, Makarova, N, Ojeda, F, Wild, P, Lackner, KJ, et al.. Troponin I and cardiovascular risk prediction in the general population: the BiomarCaRE consortium. Eur Heart J 2016;37:2428–37. https://doi.org/10.1093/eurheartj/ehw172.Search in Google Scholar

71. Sze, J, Mooney, J, Barzi, F, Hillis, GS, Chow, CK. Cardiac troponin and its relationship to cardiovascular outcomes in community populations. A systematic review and meta-analysis. Heart Lung Circ 2016;25:217–28. https://doi.org/10.1016/j.hlc.2015.09.001.Search in Google Scholar

72. Hughes, MF, Ojeda, F, Saarela, O, Jørgensen, T, Zeller, T, Palosaari, T, et al.. Association of repeatedly measured high-sensitivity-assayed troponin I with cardiovascular disease events in a general population from the MORGAM/BiomarCaRE Study. Clin Chem 2017;63:334–42. https://doi.org/10.1373/clinchem.2016.261172.Search in Google Scholar

73. Zellweger, MJ, Haaf, P, Maraun, M, Osterhues, HH, Keller, U, Müller-Brand, J, et al.. Predictors and prognostic impact of silent coronary artery disease in asymptomatic high-risk patients with diabetes mellitus. Int J Cardiol 2017;244:37–42. https://doi.org/10.1016/j.ijcard.2017.05.069.Search in Google Scholar

74. Sigurdardottir, FD, Lynbakken, MN, Holmen, OL, Dalen, H, Hveem, K, Røsjø, H, et al.. Relative prognostic value of cardiac troponin I and C-reactive protein in the general population (from the North-Trøndelag Health [HUNT] Study). Am J Cardiol 2018;121:949–55. https://doi.org/10.1016/j.amjcard.2018.01.004.Search in Google Scholar

75. Willeit, P, Welsh, P, Evans, JDW, Tschiderer, L, Boachie, C, Wouter Jukema, J, et al.. High-sensitivity cardiac troponin concentration and risk of first-ever cardiovascular outcomes in 154,052 participants. J Am Coll Cardiol 2017;70:558–68. https://doi.org/10.1016/j.jacc.2017.05.062.Search in Google Scholar

76. Welsh, P, Preiss, D, Shah, ASV, McAllister, D, Briggs, A, Boachie, C, et al.. Comparison between high-sensitivity cardiac troponin T and cardiac troponin I in a large general population cohort. Clin Chem 2018;64:1607–16. https://doi.org/10.1373/clinchem.2018.292086.Search in Google Scholar

77. Zhu, K, Knuiman, M, Divitini, M, Murray, K, Lim, EM, St John, A, et al.. High-sensitivity cardiac troponin I and risk of cardiovascular disease in an Australian population-based cohort. Heart 2018;104:895–903. https://doi.org/10.1136/heartjnl-2017-312093.Search in Google Scholar

78. Lyngbakken, MN, Røsjø, H, Oddgeir, L, Holmen, OL, Dalen, H, Hveem, K, et al.. Temporal changes in cardiac troponin I are associated with risk of cardiovascular events in the general population: the Nord-Trøndelag Health Study. Clin Chem 2019;65:871–81. https://doi.org/10.1373/clinchem.2018.301069.Search in Google Scholar

79. Thygesen, K, Mair, J, Giannitsis, E, Mueller, C, Lindahl, B, Blankenberg, S, et al.. How to use high-sensitivity cardiac troponins in acute cardiac care. Eur Heart J 2012;33:2252–7. https://doi.org/10.1093/eurheartj/ehs154.Search in Google Scholar

80. Bohula May, EA, Bonaca, MP, Jarolim, P, Antman, EM, Braunwald, E, Giugliano, RP, et al.. Prognostic performance of a high-sensitivity cardiac troponin I assay in patients with non–ST-elevation acute coronary syndrome. Clin Chem 2014;60:158–64. https://doi.org/10.1373/clinchem.2013.206441.Search in Google Scholar

81. Kozinski, M, Krintus, M, Kubica, J, Sypniewska, G. High-sensitivity cardiac troponin assays: from improved analytical performance to enhanced risk stratification. Crit Rev Clin Lab Sci 2017;54:143–72. https://doi.org/10.1080/10408363.2017.1285268.Search in Google Scholar

82. Bularga, A, Lee, KK, Stewart, S, Ferry, AV, Chapman, AR, Marshall, L, et al.. High-sensitivity troponin and the application of risk stratification thresholds in patients with suspected acute coronary syndrome. Circulation 2019;140:1557–68. https://doi.org/10.1161/circulationaha.119.042866.Search in Google Scholar

83. CLSI. Defining, establishing, and verifying reference intervals in the clinical laboratory; approved guideline, 3rd ed. Wayne (PA): CLSI; 2008. CLSI document EP28-A3c.Search in Google Scholar

84. Panteghini, M, Pagani, F, Yeo, KTJ, Apple, FS, Christenson, RH, Dati, F, et al.. Evaluation of imprecision for cardiac troponin assays at low-range concentrations. Clin Chem 2004;50:327–32. https://doi.org/10.1373/clinchem.2003.026815.Search in Google Scholar

85. Sandoval, Y, Apple, FS, Saenger, AK, Collinson, PO, Wu, AHB, Jaffe, AS. 99th percentile upper-reference limit of cardiac troponin and the diagnosis of acute myocardial infarction. Clin Chem 2020;66:1167–80. https://doi.org/10.1093/clinchem/hvaa158.Search in Google Scholar

86. Kavsak, PA, Rezanpour, A, Chen, Y, Adeli, K. Assessment of the 99 or 97.5th percentile for cardiac troponin I in a healthy pediatric cohort. Clin Chem 2014;60:1574–6. https://doi.org/10.1373/clinchem.2014.228619.Search in Google Scholar

87. Clerico, A, Zaninotto, M, Padoan, A, Ndreu, R, Musetti, V, Masotti, S, et al.. Harmonization of two hs-cTnI methods based on recalibration of measured quality control and clinical samples. Clin Chim Acta 2020;510:150–6. https://doi.org/10.1016/j.cca.2020.07.009.Search in Google Scholar

Received: 2021-05-08
Accepted: 2021-06-22
Published Online: 2021-07-06
Published in Print: 2021-10-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.1515/cclm-2021-0550/html
Scroll to top button