
Mina Signer SDK + StakingPower Wallet
Security Audit Report

Mina Foundation
Final Audit Report: 21 September 2021

Table of Contents
Overview

Background

Project Dates

Review Team

Coverage

Target Code and Revision

Supporting Documentation

Areas of Concern

Findings

General Comments

System Design

Code Quality

Documentation

Scope and Dependencies

Specific Issues & Suggestions

Issue A: Mnemonic Encryption Password Has No Constraints [StakingPower Wallet]

Issue B: Opening Arbitrary URLs of Unknown Origin [StakingPower Wallet]

Issue C: Account Metadata is Not Encrypted at Rest [StakingPower Wallet]

Issue D: Key Derivation Function is Insecure [Mina Signer SDK]

Issue E: Mnemonic Exposed Through Clipboard [StakingPower Wallet]

Issue F: Weak PBKDF2 Parameters [Mina Signer SDK]

Issue G: Substandard Encryption Algorithm [Mina Signer SDK]

Issue H: Wallet Screen Not Protected Against Screen Recording [StakingPower Wallet]

Suggestions

Suggestion 1: Load API Keys at Compile-Time [StakingPower Wallet]

Suggestion 2: Make Key and IV Argument to Encrypt Required [Mina Signer SDK]

Suggestion 3: Reconsider shared_preferences for Persistence [StakingPower Wallet]

Suggestion 4: Improve Documentation [StakingPower Wallet + Mina Signer SDK]

Suggestion 5: Increase Test Coverage [StakingPower Wallet + Mina Signer SDK]

Suggestion 6: Correct Inaccurate Code Comment [Mina Signer SDK]

Suggestion 7: Implement Root Detection [StakingPower Wallet]

Security Audit Report | Mina Signer SDK + StakingPower Wallet | Mina Foundation 1
21 September 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Suggestion 8: Implement Certificate Pinning [StakingPower Wallet]

About Least Authority

Our Methodology

Security Audit Report | Mina Signer SDK + StakingPower Wallet | Mina Foundation 2
21 September 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Overview
Background
The Mina Foundation requested that Least Authority perform a security audit of the Mina Signer SDK and
the StakingPower Wallet.

Project Dates
● June 28 - July 30: Code review (Completed)
● August 4: Delivery of Initial Audit Report (Completed)
● September 16 - 17: Verification Review (Completed)
● September 21: Final Audit Report delivered (Completed)

Review Team
● Bryan White, Security Researcher and Engineer
● Jan Winkelmann, Cryptography Researcher and Engineer
● Mirco Richter, Cryptography Researcher and Engineer
● JR, Cryptography Researcher and Engineer

Coverage
Target Code and Revision
For this audit, we performed research, investigation, and review of the Mina Signer SDK + Staking Power
Wallet followed by issue reporting, along with mitigation and remediation instructions outlined in this
report.

The following code repositories are considered in-scope for the review:
● Mina Signer SDK: https://github.com/crackerli/ffi_mina_signer
● StakingPower Wallet: https://github.com/crackerli/coda-mobile-wallet.git

Specifically, we examined the Git revisions for our initial review:

Mina Signer SDK: f92d67d3daa7e6fe376985e62427855a6b305a83

StakingPower Wallet: 941b04458d6c3a988d988e63b2c4739a6cedb179

For the verification, we examined the Git revision:

Mina Signer SDK: bab3b807fee04b43b5a004bb005c59051172f320

StakingPower Wallet: 1265a03722d8ec2aef749557a13f5857ce85cee3

For the review, these repositories were cloned for use during the audit and for reference in this report:

Mina Signer SDK: https://github.com/LeastAuthority/Mina-Signer-SDK

StakingPower Wallet: https://github.com/LeastAuthority/Mina-StakingPower-Wallet

All file references in this document use Unix-style paths relative to the project’s root directory.

Security Audit Report | Mina Signer SDK + StakingPower Wallet | Mina Foundation 3
21 September 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/crackerli/ffi_mina_signer
https://github.com/crackerli/coda-mobile-wallet.git
https://github.com/LeastAuthority/Mina-Signer-SDK
https://github.com/LeastAuthority/Mina-StakingPower-Wallet

In addition, any dependency and third party code, unless specifically mentioned as in-scope, were
considered out of scope for this review.

Supporting Documentation
The following documentation was available to the review team:

● Mina StakingPower Wallet figma (shared via email with Least Authority on 23 June 2021)
● Mina Signer SDK README.md:

https://github.com/crackerli/ffi_mina_signer/blob/null-safety/README.md
● StakingPower Wallet README.md:

https://github.com/crackerli/coda-mobile-wallet/blob/master/README.md

Areas of Concern
Our investigation focused on the following areas:

● Correctness of the implementation and adherence to best practices;
● Exposure of any critical information during user interactions with the blockchain and external

libraries, including authentication mechanisms;
● Adversarial actions and other attacks that impact funds, such as the draining or the manipulation

of funds;
● Mismanagement of funds via transactions;
● Vulnerabilities in the code, as well as secure interaction between the related and network

components;
● Proper management of encryption and storage of private keys, including the key derivation

process;
● Inappropriate permissions and excess authority;
● Data privacy, data leaking, and information integrity; and
● Anything else as identified during the initial analysis phase.

Findings
General Comments
The Mina StakingPower Wallet is a mobile wallet application that enables users to generate a key pair for
sending, receiving, and staking on the Mina Network. The Mina StakingPower Wallet relies on the Mina
Signer SDK for cryptographic functionality. Both the Mina StakingPower Wallet and the Mina Signer SDK
were the key components in scope for our security audit.

System Design
Our team conducted a broad and comprehensive review of the StakingPower Wallet and Mina Signer
SDK’s system design. It is clear that security has been strongly considered and we commend the security
due diligence efforts by the development team. In addition to instances of adherence to security best
practices, we detail our findings below, including several issues and suggestions.

StakingPower Wallet

The StakingPower Wallet implements basic security safeguards for protecting the user, by which the
mnemonic seed is encrypted before being persisted to disk. A helpful and informative User Interface (UI)
dialog has been implemented, warning users before the mnemonic phrase is viewed and prompts users to
take security precautions.

Security Audit Report | Mina Signer SDK + StakingPower Wallet | Mina Foundation 4
21 September 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/crackerli/ffi_mina_signer/blob/null-safety/README.md
https://github.com/crackerli/coda-mobile-wallet/blob/master/README.md

User Interface Security Considerations

In investigating key pair generation and wallet setup, we found that there are no constraints preventing
users from choosing insecure passwords. If the mnemonic seed is compromised, all keys derived from it
are compromised, allowing an attacker full control over all accounts derived from that mnemonic seed. As
a result, we recommend that secure password constraints be implemented and that users are shown
password strength estimations (Issue A).

State Management

We examined the BLoC state management system used in the state management of the wallet. While this
is a complex system, it is an industry standard for state management of applications with sophisticated
UI state and behavior. Similarly, we examined the handling of network requests and responses and did not
identify any issues.

In instances where secrets are available in memory, Navigator arguments (see
Navigator.pushNamed) are used to persist the mnemonic in cleartext across the onboarding routes
during initial wallet creation (see recovery_phrase_screen.dart:102 and encrypt_seed_screen.dart:L116).
In addition, the mnemonic is sent in cleartext over the event bus. It remains unclear whether this is
considered a safe practice since this may be the appropriate way to perform such operations. An attacker
would need to be able to monitor memory to observe the bus. However, we searched for instances in
which bloc.listen() would be called generically and logged, as this would dump all instances of the
mnemonic passing over the event bus, but we did not identify any instances of this. More generally, we did
not identify any issues in the implementation.

Dependencies

The StakingPower Wallet uses the HTTP library, dio, in addition to the standard Dart HTTP package, to
make TLS encrypted connections to staking provider and market information services (specifically,
Figment, Nomics, and Staketab (API)). The fromMap methods on each class of response object have
been implemented such that only expected and relevant response data are considered by the application.

Furthermore, we checked for instances where the application opens external resources and found that the
url_launcher Flutter plugin is used to open URLs provided manually by the Staketab vendor. A staking
provider website value could open and pass data to other installed applications via Intents on Android and
Universal Links on iOS. As a result, we recommend adding a warning for end users notifying that they are
navigating to an untrusted resource and the associated risk, or that the development team filter provider
website URL values those which use specific, known schemes (Issue B).

Mobile Device Security

Our team considered the general security model of a mobile device and found that physical access and
rogue applications represent a substantial threat, particularly in cases where a victim is unaware that an
attack has succeeded or been attempted. In the case of a rogue application, it must be installed on the
same device on which the wallet application is installed. Once installed, a root exploit is applied for that
specific device, if one exists, or once one has been made available. In the case of an attacker having
physical access to the device and is able to breach biometric or password user access controls (as a
result of poor security configuration or social engineering), the attacker could enable the installation of
such a rogue application.

We found that the mnemonic phrase is exposed to other applications on the device through the use of
Clipboard. We suggest that the user be required to write down the mnemonic and that Clipboard access
to the application/mnemonic be disabled in order to avoid potential exploits (Issue E).

Furthermore, an attacker with a rogue application installed on the device may be able to record the wallet
screen, which may contain security-critical information, such as the mnemonic or private information (e.g.

Security Audit Report | Mina Signer SDK + StakingPower Wallet | Mina Foundation 5
21 September 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://bloclibrary.dev/#/
https://api.flutter.dev/flutter/widgets/Navigator/pushNamed.html
https://github.com/LeastAuthority/Mina-StakingPower-Wallet/blob/master/lib/new_user_onboard/screen/recovery_phrase_screen.dart#L102
https://github.com/LeastAuthority/Mina-StakingPower-Wallet/blob/master/lib/new_user_onboard/screen/encrypt_seed_screen.dart#L116
https://pub.dev/packages/dio
https://pub.dev/packages/http
https://figment.io/
https://nomics.com/
https://api.staketab.com/mina
https://pub.dev/packages/url_launcher
https://developer.android.com/guide/components/intents-filters#CategoryTest
https://developer.apple.com/documentation/xcode/allowing-apps-and-websites-to-link-to-your-content

addresses, transaction history, and others). We recommend that the measures outlined in this report be
taken in order to mitigate this vulnerability (Issue H).

The shared_preferences Flutter plugin is used to persist application data to disk, such as account(s)
information, current network ID, and the encrypted mnemonic seed phrase. The account metadata is
being stored unencrypted, including the user’s account balance, address(es), and staking provider
address(es). In addition to encrypting the mnemonic seed, we recommend encrypting all persisted data
(except for the salt, which is required for decryption). This would improve security against an attacker
gaining control of the filesystem (Issue C). Furthermore, in examining persistence of wallet data on iOS,
NSUserDefaults (and therefore shared_preferences) may not be an optimal choice for persistence
on iOS. Thus, we recommend alternatives that provide storage-level encryption (Suggestion 3).

The wallet application implements no Root Detection or Certificate Pinning. Jailbroken or rooted iOS
devices weaken the security of the device itself and can lead to excessive application permissions
regarding other applications’ data. In these situations, any stored secrets on the device would be
considered insecure.To prevent the wallet application from opening on a device that has been rooted or
jailbroken, we suggest that Root Detection be implemented (Suggestion 7). Furthermore, we suggest
Certificate Pinning, which prevents the application from being accessed by proxies that could result in
encrypted traffic being decrypted by well-positioned attackers (Suggestion 8).

Finally, in looking at what intent-filters the Android build implements, we found that only the
ACTION_MAIN action with the CATEGORY_LAUNCHER category is included. This is standard practice and
indicative that no intent-based attack surface is present.

Mina Signer SDK

Key Management

In our review of the Mina Signer SDK Flutter plugin, we examined how private keys are secured and found
that a Dart BIP39 implementation is used to generate a mnemonic seed phrase for use in a BIP44 wallet.
The generated mnemonic phrase is converted to its seed format and then encrypted using AES-256 in
CBC mode. The encryption key that is used is the SHA256 hash of a user-specified password, prepended
with a random 64-bit salt.

The key derivation function implemented (PBKDF2) does not sufficiently adhere to recommended best
practices. If an attacker can crack the Key Derivation function, they will be able to decrypt the seed key,
allowing them to compromise the wallet. As a result, we recommend that the key derivation function be
reconfigured to adhere to industry standards (Issue F). Furthermore, we note that PBKDF2 is not a
sufficiently secure algorithm for the purpose of encryption key derivation and recommend that a
memory-hard key derivation function be implemented (Issue D).

Encryption

The encryption algorithm used in Mina Signer SDK, AES in CBC mode, is not considered to be sufficiently
secure. This may result in an attacker modifying the seed and scenarios that could lead to the loss of the
key. As a result, we recommend that an alternative authenticated encryption be used (Issue G).

Code Quality

StakingPower Wallet & Mina Signer SDK

The StakingPower Wallet and Mina Signer SDK code bases are generally well organized and adhere to
best coding practices. However, our team identified recommended areas for improvement. In the

Security Audit Report | Mina Signer SDK + StakingPower Wallet | Mina Foundation 6
21 September 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://pub.dev/packages/shared_preferences
https://developer.apple.com/documentation/foundation/nsuserdefaults
https://developer.android.com/reference/android/content/Intent#developer-guides
https://developer.android.com/reference/android/content/Intent#CATEGORY_LAUNCHER
https://pub.dev/packages/bip39
https://en.bitcoin.it/wiki/BIP_0044

StakingPower Wallet code base, we found that API keys are stored as constants, whereas best practice
recommendations suggest populating them at compile-time (Suggestion 1).

Tests

Test coverage for both the StakingPower Wallet and the Mina Signer SDK is insufficient in that neither
repository implements a test suite. We suggest that sufficient test coverage be implemented for success
and failure cases, which helps to identify potential edge cases and helps protect against errors and bugs,
which may lead to vulnerabilities or exploits. A test suite should include a minimum of unit tests and
integration tests. End-to-end testing is also recommended so that it can be determined if the
implementation behaves as intended (Suggestion 5).

Documentation

StakingPower Wallet

Our team was provided with a README.md and a graphic design document, which provided a helpful but
limited overview of the StakingPower Wallet. We recommend that the wallet documentation be improved
to include better details of the system architecture, the interaction between its subcomponents,
interaction with third-party API’s, setting up and running an Android simulator, and setting up a keystore
(Suggestion 4).

Code Comments

We found the code comments to be sufficient in explaining the intended functionality of each component.

Mina Signer SDK

Our team found the Mina Signer SDK project documentation to be insufficient. We recommend
comprehensive documentation providing a high-level description of the system, each of the components,
and interactions between those components. This can include developer documentation, new developer
onboarding documentation, and architectural diagrams. This allows an auditing team to assess the
in-scope components and understand the expected behavior of the system being audited.

Code Comments

The code comments in the mina_native_signer/crypto.c file were particularly helpful in reviewing
the Mina Signer SDK library. However, we identified an instance of inaccurate code comments and
suggested scanning the code base for inaccurate code comments, which should be corrected or removed
(Suggestion 6).

Scope and Dependencies
The scope of this security review of the StakingPower Wallet and Mina Signer SDK was generally
sufficient. However, it was necessary to examine shared_preferences as well as its alternatives
(Suggestion 3), in order to better evaluate security vulnerabilities related to data persistence, which was
outside the scope of this review.

We note that the dependencies BLoC state management system and dio HTTP client library used, while
generally known to be secure, increase the surface area for a potential vulnerability. However, these
design choices might be driven by performance trade-offs. Furthermore, we note concerns with the use of
the event bus to pass critical secrets, such as the mnemonic and passwords, however, we did not identify
instances where this data ended up in the filesystem itself.

The dio HTTP client library is used to make API requests to external services for querying blockchain
state. Specifically, the services Figment, Nomics, and Staketab are used. As such, the wallet falls in the

Security Audit Report | Mina Signer SDK + StakingPower Wallet | Mina Foundation 7
21 September 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

“API Wallet” category. While Mina technology could allow a wallet to validate the correctness of responses
by these services, this functionality is not currently implemented. Therefore, at present, it is assumed that
these parties can be trusted with supplying the correct information on the state of the chain.

Specific Issues & Suggestions
We list the issues and suggestions found during the review, in the order we reported them. In most cases,
remediation of an issue is preferable, but mitigation is suggested as another option for cases where a
trade-off could be required.

ISSUE / SUGGESTION STATUS

Issue A: Mnemonic Encryption Password Has No Constraints [StakingPower
Wallet]

Partially Resolved

Issue B: Opening Arbitrary URLs of Unknown Origin [StakingPower Wallet] Resolved

Issue C: Account Metadata is Not Encrypted at Rest [StakingPower] Resolved

Issue D: Key Derivation Function is Insecure [Mina Signer SDK] Resolved

Issue E: Mnemonic Exposed Through Clipboard [StakingPower Wallet] Unresolved

Issue F: Weak PBKDF2 Parameters [Mina Signer SDK] Resolved

Issue G: Substandard Encryption Algorithm [Mina Signer SDK] Resolved

Issue H: Wallet Screen Not Protected Against Screen Recording
[StakingPower Wallet]

Resolved

Suggestion 1: Load API Keys at Compile-Time [StakingPower Wallet] Resolved

Suggestion 2: Make Key and IV Argument to Encrypt Required [Mina Signer
SDK]

Resolved

Suggestion 3: Reconsider Shared_Preferences for Persistence [StakingPower
Wallet]

Resolved

Suggestion 4: Improve Documentation [StakingPower Wallet + Mina Signer
SDK]

Unresolved

Suggestion 5: Increase Test Coverage [StakingPower Wallet + Mina Signer
SDK]

Unresolved

Suggestion 6: Correct Inaccurate Code Comment [Mina Signer SDK] Resolved

Security Audit Report | Mina Signer SDK + StakingPower Wallet | Mina Foundation 8
21 September 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Suggestion 7: Implement Root Detection [StakingPower Wallet] Partially Resolved

Suggestion 8: Implement Certificate Pinning [StakingPower Wallet] Unresolved

Issue A: Mnemonic Encryption Password Has No Constraints
[StakingPower Wallet]

Location

The following code execution path demonstrates the password confirmation text being passed directly
through to the key derivation function without any validation:

Mina-StakingPower-Wallet/lib/new_user_onboard/screen/encrypt_seed_screen.dart:
74

Mina-Signer-SDK/lib/sdk/mina_signer_sdk.dart:33

Mina-Signer-SDK/lib/encrypt/crypter.dart:36

Synopsis

There are no constraints on the user-chosen password (e.g., length, character diversity, non-dictionary
words, etc.). This makes it possible for a user to choose a weak password, increasing the feasibility of
compromise of the data encrypted with its derived key.

Impact

If the mnemonic seed is compromised, all keys derived from it are compromised. This means an attacker
would have full control over (i.e., able to sign transactions on behalf of) all accounts derived from that
mnemonic seed.

Preconditions

An attacker would have to obtain the shared_preferences .xml or NSUserDefaults .plist file.

On Android, SharedPreferences data is stored on the filesystem, which could be exfiltrated by a rogue
application or an unauthorized user, given physical access to the device. On iOS, NSUserDefaults and
.plist files are not accessible to rogue applications, except in the cases where the device has been
jailbroken or rooted.

Feasibility

With the availability of powerful hardware like CPUs, GPUs, and FPGAs on the cloud, it is not difficult to
brute force the key for various classes of weak passwords (e.g., low entropy, dictionary words, and
others), particularly since SHA-256 is inexpensive on CPU resources (see Issue D).

Obtaining the shared preferences file, however, likely requires that the device has been successfully
attacked previously. For example, as previously described, this could be done by means of physical
access or a rogue application. Rogue applications have been historically identified in multiple application
stores.

Security Audit Report | Mina Signer SDK + StakingPower Wallet | Mina Foundation 9
21 September 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/Mina-StakingPower-Wallet/blob/master/lib/new_user_onboard/screen/encrypt_seed_screen.dart#L74
https://github.com/LeastAuthority/Mina-StakingPower-Wallet/blob/master/lib/new_user_onboard/screen/encrypt_seed_screen.dart#L74
https://github.com/LeastAuthority/Mina-Signer-SDK/blob/master/lib/sdk/mina_signer_sdk.dart#L33
https://github.com/LeastAuthority/Mina-Signer-SDK/blob/master/lib/encrypt/crypter.dart#L36
https://pub.dev/packages/shared_preferences
https://developer.android.com/reference/android/content/SharedPreferences
https://developer.apple.com/documentation/foundation/nsuserdefaults
https://www.trendmicro.com/en_us/research/16/f/godless-mobile-malware-uses-multiple-exploits-root-devices.html

Technical Details

Mina uses hierarchical deterministic wallets according to BIP44 to structure their wallet data in a
client-agnostic way.

shared_preferences data is protected by filesystem user access control only and is stored in
plain-text XML.

Mitigation

We recommend adding messaging to the EncryptSeedScreen widget that informs users of password
best practices, the risk of choosing a weak password, and the risks of using a rooted device.

Remediation

We recommend adding password strength estimation to the form validation and prevent users from
choosing weak passwords.

Status

The StakingPower Wallet team has added the password_strength package as a dependency and
integrated it into the UI to show the user a password strength estimation based on length, characters
used, and a “top 10,000” dictionary.

Although this estimation is being done and presented to the user, it is not preventing the submission of
weak passwords. In order to fully resolve the issue, we recommend that the StakingPower Wallet team
prevent users from choosing weak passwords.

Verification

Partially Resolved.

Issue B: Opening Arbitrary URLs of Unknown Origin [StakingPower
Wallet]

Location

The following code execution path demonstrates how these values are used from when they are received
from Staketab to when they are passed into url_launcher:

Mina-StakingPower-Wallet/lib/stake_provider/blocs/stake_providers_bloc.dart:42
,47,48

Mina-StakingPower-Wallet/lib/stake_provider/blocs/stake_providers_entity.dart:
6,60

Mina-StakingPower-Wallet/lib/stake_provider/screen/stake_providers_screen.dart
:104,163,176,233

Mina-StakingPower-Wallet/lib/global/global.dart:63

Synopsis

The Staketab API is used to retrieve a list of staking providers. The URLs from the website field are used
as-is in the application's provider list as link destinations.

Security Audit Report | Mina Signer SDK + StakingPower Wallet | Mina Foundation 10
21 September 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://en.bitcoin.it/wiki/BIP_0044
https://stackoverflow.com/questions/6146106/where-are-shared-preferences-stored/6146207#6146207
https://stackoverflow.com/questions/6146106/where-are-shared-preferences-stored/6146207#6146207
https://api.staketab.com/mina
https://github.com/LeastAuthority/Mina-StakingPower-Wallet/blob/master/lib/stake_provider/blocs/stake_providers_bloc.dart#L42
https://github.com/LeastAuthority/Mina-StakingPower-Wallet/blob/master/lib/stake_provider/blocs/stake_providers_bloc.dart#L42
https://github.com/LeastAuthority/Mina-StakingPower-Wallet/blob/master/lib/stake_provider/blocs/stake_providers_entity.dart#L6
https://github.com/LeastAuthority/Mina-StakingPower-Wallet/blob/master/lib/stake_provider/blocs/stake_providers_entity.dart#L6
https://github.com/LeastAuthority/Mina-StakingPower-Wallet/blob/master/lib/stake_provider/screen/stake_providers_screen.dart#L104
https://github.com/LeastAuthority/Mina-StakingPower-Wallet/blob/master/lib/stake_provider/screen/stake_providers_screen.dart#L104
https://github.com/LeastAuthority/Mina-StakingPower-Wallet/blob/master/lib/global/global.dart#L63
https://api.staketab.com/mina

Impact

A staking provider website value could open and pass data to other installed applications via Intents on
Android and Universal Links on iOS.

Preconditions

One or more provider website values returned from the Staketab APIs use a scheme, which is supported
by an installed application’s intent-filters or universal links, on Android or iOS, respectively.

Feasibility

Staketab claims to receive URLs from provider representatives, which they manually verify internally
before committing to the database, making this unlikely.

Technical Details

The url_launcher Flutter plugin is used by the application to open these URLs.

On Android, url_launcher uses the Intent system. By default, it uses an implicit intent with the
Intent.ACTION_VIEW action, depending on intent resolution to open the appropriate application (see
intents-filters guide).

On iOS, url_launcher uses UIApplication#openURL at FLTURLLauncherPlugin.m:118. This means
that URLs can open and pass data to other installed applications via universal links.

Mitigation

We recommend adding a warning for end users, which explains that they are navigating to an untrusted
resource and the associated risks.

Remediation

We recommend filtering provider website URL values to, at most, those which use specific, known
schemes (e.g. HTTPS).

Alternatively, we recommend setting the forceWebView and forceSafariVC options to true.

Status

The StakingPower Wallet team has implemented a warning dialog, which includes a warning message
and the URL itself. This dialog makes it so that users must confirm that they wish to navigate to a given
URL.

Verification

Resolved.

Issue C: Account Metadata is Not Encrypted at Rest [StakingPower Wallet]

Location

my_accounts/screen/create_account_screen.dart:183

my_accounts/screen/edit_account_screen.dart:166

new_user_onboard/screen/encrypt_seed_screen.dart:82

wallet_home/screen/wallet_home_screen.dart:168

Security Audit Report | Mina Signer SDK + StakingPower Wallet | Mina Foundation 11
21 September 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://developer.android.com/guide/components/intents-filters#CategoryTest
https://developer.apple.com/documentation/xcode/allowing-apps-and-websites-to-link-to-your-content
https://pub.dev/packages/url_launcher
https://developer.android.com/reference/android/content/Intent#intent-structure
https://developer.android.com/reference/android/content/Intent#ACTION_VIEW
https://developer.android.com/reference/android/content/Intent#intent-resolution
https://developer.android.com/guide/components/intents-filters#Receiving
https://developer.apple.com/documentation/uikit/uiapplication/1648685-openurl?language=objc
https://github.com/flutter/plugins/blob/master/packages/url_launcher/url_launcher/ios/Classes/FLTURLLauncherPlugin.m#L118
https://developer.apple.com/documentation/xcode/supporting-universal-links-in-your-app
https://github.com/LeastAuthority/Mina-StakingPower-Wallet/blob/941b04458d6c3a988d988e63b2c4739a6cedb179/lib/my_accounts/screen/create_account_screen.dart#L183
https://github.com/LeastAuthority/Mina-StakingPower-Wallet/blob/941b04458d6c3a988d988e63b2c4739a6cedb179/lib/my_accounts/screen/edit_account_screen.dart#L166
https://github.com/LeastAuthority/Mina-StakingPower-Wallet/blob/941b04458d6c3a988d988e63b2c4739a6cedb179/lib/new_user_onboard/screen/encrypt_seed_screen.dart#L82
https://github.com/LeastAuthority/Mina-StakingPower-Wallet/blob/941b04458d6c3a988d988e63b2c4739a6cedb179/lib/wallet_home/screen/wallet_home_screen.dart#L168

Synopsis

With the exception of the mnemonic seed, data stored by the application using the
shared_preferences plugin is not encrypted. This unnecessarily exposes sensitive metadata in the
event that a device is compromised.

Impact

Account metadata may be leaked, resulting in de-anonymization of the target user as well as disclosing
the number of accounts managed by the wallet, their addresses and balances, and with which staking
provider(s) (if any) each is staked.

Preconditions

An attacker would have to obtain the shared_preferences .xml or NSUserDefaults .plist file.

On Android, SharedPreferences data is stored on the filesystem which could be exfiltrated by a rogue
application or an unauthorized user given physical access to the device.

On iOS, NSUserDefaults and .plist files are not accessible to rogue applications, except in the cases
where the device has been jailbroken or rooted.

Feasibility

Obtaining the shared_preferences file likely requires that the device has been successfully attacked
previously (e.g. by means of physical access or a rogue application). Rogue applications have historically
been identified in multiple application stores.

Technical Details

The shared_preferences Flutter plugin uses Android’s SharedPreferences on Android and
NSUserDefaults on iOS to persist data to disk on a per application basis. The wallet is storing all persisted
data as JSON-encoded strings in an .xml or .plist file on Android or iOS, respectively.

Remediation

We recommend encrypting all persisted data (except for the salt).

Status

The StakingPower Wallet team has replaced their usage of the shared_preferences plugin with
flutter_secure_storage, which ensures that all data stored by the wallet is encrypted at rest.
Additionally, automated migration has been included for existing installations.

Verification

Resolved.

Issue D: Key Derivation Function is Insecure [Mina Signer SDK]

Location

Mina-Signer-SDK/lib/encrypt/crypter.dart#L37

Mina-Signer-SDK/lib/encrypt/kdf/sha256_kdf.dart

Security Audit Report | Mina Signer SDK + StakingPower Wallet | Mina Foundation 12
21 September 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://pub.dev/packages/shared_preferences
https://developer.android.com/reference/android/content/SharedPreferences
https://developer.apple.com/documentation/foundation/nsuserdefaults
https://www.trendmicro.com/en_us/research/16/f/godless-mobile-malware-uses-multiple-exploits-root-devices.html
https://developer.android.com/reference/android/content/SharedPreferences
https://developer.apple.com/documentation/foundation/nsuserdefaults
https://github.com/LeastAuthority/Mina-Signer-SDK/blob/master/lib/encrypt/crypter.dart#L37
https://github.com/LeastAuthority/Mina-Signer-SDK/blob/master/lib/encrypt/kdf/sha256_kdf.dart

Synopsis

An AES-256 encryption key is derived from a user password for the purpose of encrypting the mnemonic
seed. This key derivation function utilizes the SHA-256 hashing function, which is not a sufficiently secure
algorithm for this purpose.

Impact

Leakage of all plaintext of an encrypted wallet is possible, including the wallet seed. This leads to the
attacker being able to author transactions and steal funds.

Preconditions

The attack requires access to the encrypted wallet data (e.g. by reading the memory of a stolen device).

Feasibility

Cracking weak password hashes is a process that can be radically optimized (e.g. using FPGAs). While
these require some know-how and upfront investment, they allow very high guess rates compared to their
costs.

Technical Details

The SHA-256 hash function is, for multiple reasons, not an appropriate algorithm for deriving keys from
passwords. Firstly, hash functions are not key derivation functions. They serve different purposes, even
though key derivation functions usually are constructed from hash functions. Secondly, when deriving
keys from passwords, memory-hard functions should be used, in order to make brute force attacks
infeasible. Note that SHA-256 can be executed and parallelized not only on computers, but also on FPGAs,
resulting in a significantly lower power per guess ratio, which in turn leads to lower operating cost per
guess ratio. Memory-hard functions help because they can not be parallelized well on FPGAs, GPUs, or
specialized hardware.

Moving the burden of choosing a password that is secure with a simple key derivation function like HKDF
to the user ignores that many users will not follow best practices when selecting a password. Entering
passwords on phones can be tricky and prone to mistyping, which incentivizes users not to choose good
passwords, which may in turn lead to insecure wallets. Additionally, the time needed to correctly enter a
sufficiently secure password for a regular key derivation function is much longer than the time needed for
a more secure password hashing function to run, leading to a net slowdown of the user. A memory-hard
function key derivation function is more secure if the user chooses a weak password.

Remediation

We recommend using the Argon2id key derivation function, with the memory parameter set to 64MB,
parallelism set to 4, and iteration count to 3.

Status

The StakingPower Wallet team has updated the MinaCryptor class’s encrypt and decrypt methods
to use Argon2id for key derivation and XChaCha20Poly1305 for encryption by default. It falls back to the
original method when decrypting for backwards compatibility.

Verification

Resolved.

Security Audit Report | Mina Signer SDK + StakingPower Wallet | Mina Foundation 13
21 September 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Issue E: Mnemonic Exposed Through Clipboard [StakingPower Wallet]

Location

new_user_onboard/screen/recovery_phrase_screen.dart#L87

Synopsis

The mnemonic phrase used to derive the wallet keys is accessible to the rest of the applications on the
device via Clipboard. Clipboard is a global object that is accessible across application security
boundaries. Any applications that are watching Clipboard will be able to see the mnemonic when the user
copies it to Clipboard.

Impact

With access to the mnemonic, an attacker would be able to clone the wallet and take over all of its assets.

Preconditions

An application monitoring Clipboard when the mnemonic is copied. This is not an unlikely scenario, as
many applications are known to do this by design. As of iOS 14, iOS notifies users whenever another
application accesses Clipboard. For an application to be targeting the mnemonics specifically, a user’s
phone would need to already have a malicious application targeting the StakingPower Wallet installed.

Feasibility

Clear APIs for viewing Clipboard are available for iOS and Android developers. Creating a Clipboard
monitoring application would not be difficult. However, a more difficult task would be to compromise the
phone of a Mina user. Additionally, if the user is using an iPhone with version of iOS >= 14, they would be
notified when another application accessed Clipboard, alerting them that the mnemonic had been
accessed.

Remediation

We recommend not allowing the mnemonic to be saved to Clipboard. Instead, we suggest requiring users
to write down the mnemonic in a place off of the filesystem of their device.

Status

The StakingPower Wallet team has created an intermediary step that warns the user of the dangers
involved with using Clipboard. In order to remediate this issue, we recommend preventing the ability for
the user to copy to Clipboard, as the current approach transfers the risk to the user and leaves the issue
unresolved.

Verification

Unresolved.

Issue F: Weak PBKDF2 Parameters [Mina Signer SDK]

Location

lib/encrypt/kdf/pbkdf2_kdf.dart

Synopsis

The parameter configuration of the PBKDF2 does not adhere to accepted standards. A SHA-1 HMAC is
used with 100 iterations and returns a 32 byte key with 16 byte salt. Current OWASP recommendations

Security Audit Report | Mina Signer SDK + StakingPower Wallet | Mina Foundation 14
21 September 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/Mina-StakingPower-Wallet/blob/master/lib/new_user_onboard/screen/recovery_phrase_screen.dart#L87
https://arstechnica.com/gadgets/2020/06/tiktok-and-53-other-ios-apps-still-snoop-your-sensitive-clipboard-data/
https://github.com/LeastAuthority/Mina-Signer-SDK/blob/master/lib/encrypt/kdf/pbkdf2_kdf.dart

specify over 300,000 iterations using SHA-256 HMAC for FIPS-140 compliance. As of 2016, NIST
recommends a minimum of 10,000 iterations. For reference:

● 5 Authenticator and Verifier Requirements: https://pages.nist.gov/800-63-3/sp800-63b.html#sec5
● Password Storage Cheat Sheet:

https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
● Parameter Choice for PBKDF2: https://cryptosense.com/blog/parameter-choice-for-pbkdf2

However, even with sufficient iterations, PBKDF2 can be efficiently parallelized and therefore does not
provide a strong protection against brute-force attacks.

Impact

If an attacker can crack the Key Derivation function, they will be able to decrypt the seed key, allowing
them to compromise the wallet.

Preconditions

An attacker would need to have access to the encrypted seed key, as well as specialized hardware to
launch the attack.

Mitigation

We recommend vastly increasing the iterations. Since the NIST recommendations are also old by modern
standards, the current OWASP recommendation of 300,000 iterations is a more robust solution if PBKDF2
is used.

Remediation

We recommend replacing PBKDF2 with a memory-hard function (see Issue D).

Status

The StakingPower Wallet team has deprecated the use of PBKDF2 and replaced it with a memory hard key
derivation function using flutter_sodium, using flutter ffi, Argon2id (v13) and
XChaCha20Poly1305ietf. The parameters for Argon2id password hashing are a memory limit of 128M, 3
iterations, and an output length of 32, and parallelism set to 1.

Verification

Resolved.

Issue G: Substandard Encryption Algorithm [Mina Signer SDK]

Location

encrypt/aes/aes_cbcpkcs7.dart

Synopsis

The CBC mode of operation does not provide any authentication on its own. That means that it is
malleable in that it is possible to change the ciphertext in such a way that it can decrypt to a different,
valid-looking plaintext. A better approach would be to use authenticated encryption (e.g. libsodium’s
secretbox or AES with the GCM mode or operation).

Impact

The attacker could modify the seed and there are scenarios where this may lead to loss of the key. For
example, if the attacker has physical access to the phone but is unable to crack the password, they may
replace the parts of seed. The attacher then returns the phone and the owner transfers money to the

Security Audit Report | Mina Signer SDK + StakingPower Wallet | Mina Foundation 15
21 September 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://pages.nist.gov/800-63-3/sp800-63b.html#sec5
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://cryptosense.com/blog/parameter-choice-for-pbkdf2
https://github.com/LeastAuthority/Mina-Signer-SDK/blob/master/lib/encrypt/aes/aes_cbcpkcs7.dart

account. This results in the attacker knowing parts of the seed, which may result in making a successful
guess of the rest of the seed.

Preconditions

An attacker would need to have access to the encrypted seed and the ability to change it.

Remediation

We recommend using an authenticated encryption algorithm like libsodium’s secretbox or AES-GCM.

Status

The StakingPower Wallet team has replaced the AES-CBC encryption algorithm with
XChaCha20Poly1305ietf, which is an authenticated cipher.

Verification

Resolved.

Issue H: Wallet Screen Not Protected Against Screen Recording
[StakingPower Wallet]

Synopsis

On Android and some versions of iOS, the user or an application may record videos or individual frames
from the StakingPower Wallet application.

The data displayed by the StakingPower Wallet is critical to both the security of the application and the
privacy of the user. This data includes the mnemonic phrase, which is displayed during wallet key pair
generation, and at any time after that in the backup screen. A leak of the mnemonic passphrase is a
critical breach of the security of the wallet. Additionally, the wallet displays user account balance and
transaction history, of which a malicious screenshot could leak private user data.

Private user data must be secured and protected from access by other applications running on the mobile
device.

Impact

A malicious application accessing an image of the mnemonic phrase could result in loss of all wallet
funds. In addition, account balance or transaction history leaks are a breach of user privacy.

Preconditions

The user must make a screenshot, and grant other applications access to the screenshot. Alternatively an
application that has access to the contents of the screen (e.g. a screen recording application) would be
required.

Feasibility

The feasibility of such an attack depends on the specific phone and operating system (OS).

On iOS 10 or newer, there is no API for an application to use to access the screen of another application,
so this attack vector is not applicable. However, if the attacker plants a malicious application with access
to the photo gallery on the device and the user makes a screenshot of the seed phrase or other private
information, it is possible for the application to access it.

On Android, the MediaProjection API can be used to record the contents of the screen. The user has to
explicitly consent to the access, and during the duration of the screen recording, an icon is shown. This

Security Audit Report | Mina Signer SDK + StakingPower Wallet | Mina Foundation 16
21 September 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://developer.android.com/reference/android/media/projection/MediaProjection

icon represents wireless transmission of the screen contents to a projector or ChromeCast and may not
be immediately identifiable as a screen recording icon. Additionally, any application with access to the
files of the user can access all screenshots.

Mitigation

We recommend that measures to prevent or mitigate the impact of screenshots be taken, as detailed
below.

Android

On Android, we recommend setting FLAG_SECURE on the application window and ensuring that no private
content is shown in other windows. For more information, we suggest referring to this blog post about
vulnerabilities of weak screenshot protection. It appears in the past the techniques used to prevent screen
capture in Flutter have occasionally failed, however, the easiest way to enable it may be the
flutter_windowmanager package. However, we do recommend testing the setup on multiple devices
and Android versions to verify that the packages function correctly.

iOS

On iOS, there is no API to prevent screenshots, which makes mitigating this issue more difficult. In some
instances, the only thing that can be done is to remind the user that taking screenshots of the seed means
making it available to other applications. In other cases, such as the seed generation screen, stronger
measures could be taken. In this case, the iOS event UIApplicationUserDidTakeScreenshotNotification can
be handled to display a notice to the user that the action is not secure, and to generate and display a new
seed. With this approach, instead of preventing the screenshot of a seed that is used, using a seed that is
screenshot is prevented. ScreenShieldKit also warrants mention in this case as a potential resource for
preventing screenshots.

Status

The StakingPower Wallet team has implemented a mix of prevention and notification strategies to prevent
unnoticed capturing of sensitive information.

Android

On Android, the client protects the contents of the screen showing sensitive information using
FLAG_SECURE. While the screen can still be recorded using adb on some devices, this vector is usually
not available to attackers.

iOS

On iOS, screenshots on such screens are detected and the user is warned.

Verification

Resolved.

Suggestions

Suggestion 1: Load API Keys at Compile-Time [StakingPower Wallet]

Location

Mina-StakingPower-Wallet/lib/constant/constants.dart:6

Mina-StakingPower-Wallet/lib/constant/constants.dart:15

Security Audit Report | Mina Signer SDK + StakingPower Wallet | Mina Foundation 17
21 September 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://blog.doyensec.com/2019/08/22/modern-password-managers-flag-secure.html
https://blog.doyensec.com/2019/08/22/modern-password-managers-flag-secure.html
https://github.com/flutter/flutter/issues/47557
https://github.com/flutter/flutter/issues/47557
https://pub.dev/packages/flutter_windowmanager
https://developer.apple.com/documentation/uikit/uiapplicationuserdidtakescreenshotnotification?language=objc
https://screenshieldkit.com/
https://github.com/LeastAuthority/Mina-StakingPower-Wallet/blob/master/lib/constant/constants.dart#L6
https://github.com/LeastAuthority/Mina-StakingPower-Wallet/blob/master/lib/constant/constants.dart#L15

Synopsis

FIGMENT_KEY and NOMICS_KEY are constant literals committed into version control. This appears like it
could easily result in one or more contributors accidentally committing and publishing their API keys. This
also leaves room for this to happen in production depending on the rigorousness of the release process.

Mitigation

We recommend loading API keys via environment to the Dart/Flutter ecosystem features such as
compile-time variables.

Status

The StakingPower Wallet team has moved API keys into build scripts, which are excluded from version
control using command options –dart-define to pass these compile parameters and
String.fromEnvironment in Dart to read from a corresponding environment variable.

Verification

Resolved.

Suggestion 2: Make Key and IV Argument to Encrypt Required [Mina
Signer SDK]

Location

Mina-Signer-SDK/lib/encrypt/aes/aes_cbcpkcs7.dart:8

Synopsis

The signature for AesCbcPkcs7#encrypt allows for the key and iv arguments to be null. In the case
that either is null, the implementation assigns a Uint8List of length 1 containing the value zero to it.
In the case where either key or iv is null, the security of the resulting value is silently weak (as opposed
to throwing an exception). In the case where both are null, the resulting value can simply be reversed,
exposing the plaintext input.

Mitigation

We recommend making key and iv arguments required for encryption.

Status

The StakingPower Wallet team has deprecated the AesCbcPkcs class’s encrypt and decrypt methods as
encryption and decryption are now performed using XChaCha20Poly1305 provided by the
flutter_sodium plugin.

Verification

Resolved.

Suggestion 3: Reconsider shared_preferences for Persistence
[StakingPower Wallet]

Synopsis

The shared_preferences documentation warns not to use it for storing critical data:

“Data may be persisted to disk asynchronously, and there is no guarantee that writes will be
persisted to disk after returning, so this plugin must not be used for storing critical data.”

Security Audit Report | Mina Signer SDK + StakingPower Wallet | Mina Foundation 18
21 September 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/Mina-Signer-SDK/blob/master/lib/encrypt/aes/aes_cbcpkcs7.dart#L8
https://pub.dev/packages/shared_preferences

We suspect this warning has more to do with the behavior of NSUserDefaults than
Shared_Preferences as the NSUserDefaults documentation states:

“When you set a default value, it’s changed synchronously within your process, and
asynchronously to persistent storage and other processes.”

Impact

Since the user is expected to keep a copy of the mnemonic, the impact of any data loss should be one of
only temporary inconvenience for the user.

If the application is relaunched after a failed write of either the encrypted mnemonic seed or the account
metadata, it will ask the user to create a new wallet or import from mnemonic.

Mitigation

We recommend considering alternatives which do not depend on NSUserDefaults.
Flutter_secure_storage, for example, uses Keychain Services instead of NSUserDefaults on iOS.
This would also improve the security of shared preferences data at rest (see Issue C).

Status

The StakingPower Wallet team has replaced direct usage of shared_preferences with
flutter_secure_storage in response to Issue C.

Verification

Resolved.

Suggestion 4: Improve Documentation [StakingPower Wallet + Mina
Signer SDK]

Location

Mina-Signer-SDK/blob/master/README.md

Mina-StakingPower-Wallet/blob/master/README.md

Synopsis

The existing project documentation was helpful in getting the application running, however, we found a
number of areas where the documentation was insufficient and would benefit from improvement.

StakingPower Wallet

Our team was provided with a README.md and a graphic design document for the wallet application.
Although helpful, we found this documentation insufficient at describing the details of the system
architecture and interaction between its subcomponents. We found no documentation describing
interaction with third-party API’s, requiring assumptions to be made about creating accounts with
third-parties to obtain API keys. Additionally, our team found no documentation on setting up and running
an Android simulator, or on how to set up a keystore.

Mina Signer SDK

The Signer SDK contains code copied and modified from the official Mina C Reference Signer, but the
documentation does not state which version of the commit was copied. In addition, there is no
documentation of how the encryption is performed (i.e. how the keys are derived from passwords and
what encryption scheme is used).

Security Audit Report | Mina Signer SDK + StakingPower Wallet | Mina Foundation 19
21 September 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://developer.apple.com/documentation/foundation/nsuserdefaults
https://github.com/LeastAuthority/Mina-Signer-SDK/blob/master/README.md
https://github.com/LeastAuthority/Mina-StakingPower-Wallet/blob/master/README.md
https://github.com/MinaProtocol/c-reference-signer

Mitigation

We recommend creating additional documentation detailing the StakingPower Wallet and Mina Signer
SDK architecture. Additionally, we suggest adding documentation outlining how to set up a keystore and
how to run the application in the Android simulator.

Status

The StakingPower Wallet team has responded that they intend to make documentation available in
conjunction with publishing the Signer SDK package to the Dart software repository, pub.dev. As a result,
the suggestion remains unresolved at the time of this verification.

Verification

Unresolved.

Suggestion 5: Increase Test Coverage [StakingPower Wallet + Mina Signer
SDK]

Location

Mina-Signer-SDK/tree/master/test

Mina-StakingPower-Wallet/tree/master/test

Synopsis

The StakingPower Wallet and the Mina Signer SDK do not implement a test suite. As a result, testing is
insufficient and should be expanded to cover both implementations.

A sufficient test suite that tests for success and failure cases helps to protect against errors and bugs. In
addition, tests help to identify potential edge cases, which may lead to vulnerabilities or exploits. A test
suite should include a minimum of unit tests and integration tests. End-to-end testing is also
recommended so that it can be determined if the implementation behaves as intended.

Mitigation

We recommend implementing a test suite for the StakingPower Wallet and the Mina Signer SDK that
sufficiently covers both implementations. In particular, testing for the StakingPower Wallet must include
integration tests for an application with non-trivial presentation logic and multiple backend service
integrations. Testing for Mina Signer SDK must check that native functions are being called correctly by
their respective Dart wrapper functions, thus testing success and error cases.

Status

The StakingPower Wallet team has responded that they plan to implement additional unit tests after the
initial security issues and suggestions are fully resolved and published. As a result, the suggestion
remains unresolved at the time of this verification.

Verification

Unresolved.

Suggestion 6: Correct Inaccurate Code Comment [Mina Signer SDK]

Location

encrypt/kdf/pbkdf2_kdf.dart#L12-L15

Security Audit Report | Mina Signer SDK + StakingPower Wallet | Mina Foundation 20
21 September 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://pub.dev
https://github.com/LeastAuthority/Mina-Signer-SDK/tree/master/test
https://github.com/LeastAuthority/Mina-StakingPower-Wallet/tree/master/test
https://flutter.dev/docs/testing
https://github.com/LeastAuthority/Mina-Signer-SDK/blob/master/lib/encrypt/kdf/pbkdf2_kdf.dart#L12-L15

Synopsis

In the pbkdf2_kdf.dart file, we identified an inaccurate comment that states, “If salt is not provided, a
random 8-byte one will be generated”. However, the code does not reflect this intention. Instead, only a
single null byte is used for the salt. This comment is misleading as it indicates that a random salt will be
provided, when instead a predictable one will be. This may prompt user’s of the SDK to unknowingly build
insecure applications.

Mitigation

We recommend correcting the comment to either indicate that a single null byte will be used for the salt if
none is provided, or alter the code so that an 8 byte salt is generated using a Cryptographically Secure
Pseudo Random Number Generator, such as the SecureRandom class from the pointycastle API.
Alternatively, the salt could be made a required parameter and the comment removed entirely.

We also recommend checking that all comments are accurate and relevant.

Status

The StakingPower Wallet team has updated the comment to be accurate.

Verification

Resolved.

Suggestion 7: Implement Root Detection [StakingPower Wallet]

Synopsis

Rooted mobile devices compromise the security model of the device and expose user’s data to exposure
from malicious applications. For instance, on iOS, NSUserDefaults and .plist files are not accessible
to rogue applications, except in the cases where the device has been jailbroken or rooted. If an Android
device has an unlocked bootloader, they could boot the device into an arbitrary OS which would permit full
access to all filesystems. Without any root detection functionality, the application would continue to
function under these circumstances.

A common practice for applications that implement root detection is to perform checks on application
startup, and then if any of the checks fail, then the application refuses to load. This prevents users from
possibly exposing their wallets to malicious parties. While root detection bypasses do exist, they often
require additional effort by the attacker.

Mitigation

We recommend implementing Root Detection and closing the application if the device is rooted.

Status

The StakingPower Wallet team has implemented the flutter_jailbreak_protection Flutter
package that uses RootBeer for Android and DTTJailbreakProtection for iOS. The development team
chose to allow the application to continue to work on a rooted device, but with a warning to the user of the
risks involved. As a result, we consider the suggestion partially resolved at the time of this verification.

Verification

Partially Resolved.

Security Audit Report | Mina Signer SDK + StakingPower Wallet | Mina Foundation 21
21 September 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Suggestion 8: Implement Certificate Pinning [StakingPower Wallet]

Synopsis

Certificate Pinning locks (or pins) a predefined public key to a host and prevents the application from
being used with any proxies that could result in encrypted traffic being decrypted by well positioned
attackers. This technique is often used in mobile applications to prevent eavesdropping or the use of
intercepting proxies.

In situations where an intercepting proxy is between the application and the host, the proxy will provide a
Certificate that is valid and an unsuspecting application will send HTTPS traffic to it. However, this
intercepting proxy can then decrypt the messages before re-encrypting them and forwarding them to the
target host. Certificate Pinning is a technique to prevent such attacks.

Note that there are Certificate Pinning bypasses that can turn this protection off, but they require that the
application binary to be modified, or the device to be rooted.

Mitigation

Certificate Pinning is considered a best security practice for mobile applications. However, because Mina
does not control the Figment infrastructure, this creates uncertainty for the best approach. Because
Figment could rotate their keys at any time without notifying the development team, users of the Staking
Power Wallet could be locked out of the application unexpectedly until the development team pins to a
new certificate.

Because Figment’s infrastructure is hosted in AWS and certificates are signed by the Amazon Root
Certificate Authority (CA), one solution could be to verify that the certificate is for the Figment domain and
has been signed by the Amazon Root CA. However, if Figment switches CAs unexpectedly, the same
Denial of Service issue will occur.

We feel the solution to this problem will involve the development team assessing the pros and cons of
potential issues against following best security practices

Status

The StakingPower Wallet team has responded that they will coordinate with the Figment team on finding
a way to support some form of certificate pinning. Until then, certificate pinning will remain disabled. As a
result, the suggested mitigation remains unresolved at the time of this verification.

Verification

Unresolved.

Security Audit Report | Mina Signer SDK + StakingPower Wallet | Mina Foundation 22
21 September 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

About Least Authority
We believe that people have a fundamental right to privacy and that the use of secure solutions enables
people to more freely use the Internet and other connected technologies. We provide security consulting
services to help others make their solutions more resistant to unauthorized access to data and
unintended manipulation of the system. We support teams from the design phase through the production
launch and after.

The Least Authority team has skills for reviewing code in C, C++, Python, Haskell, Rust, Node.js, Solidity,
Go, and JavaScript for common security vulnerabilities and specific attack vectors. The team has
reviewed implementations of cryptographic protocols and distributed system architecture, including in
cryptocurrency, blockchains, payments, and smart contracts. Additionally, the team can utilize various
tools to scan code and networks and build custom tools as necessary.

Least Authority was formed in 2011 to create and further empower freedom-compatible technologies. We
moved the company to Berlin in 2016 and continue to expand our efforts. Although we are a small team,
we believe that we can have a significant impact on the world by being transparent and open about the
work we do.

For more information about our security consulting, please visit
https://leastauthority.com/security-consulting/.

Our Methodology
We like to work with a transparent process and make our reviews a collaborative effort. The goals of our
security audits are to improve the quality of systems we review and aim for sufficient remediation to help
protect users. The following is the methodology we use in our security audit process.

Manual Code Review
In manually reviewing all of the code, we look for any potential issues with code logic, error handling,
protocol and header parsing, cryptographic errors, and random number generators. We also watch for
areas where more defensive programming could reduce the risk of future mistakes and speed up future
audits. Although our primary focus is on the in-scope code, we examine dependency code and behavior
when it is relevant to a particular line of investigation.

Vulnerability Analysis
Our audit techniques included manual code analysis, user interface interaction, and whitebox penetration
testing. We look at the project's web site to get a high level understanding of what functionality the
software under review provides. We then meet with the developers to gain an appreciation of their vision
of the software. We install and use the relevant software, exploring the user interactions and roles. While
we do this, we brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim open issue
tickets, and generally investigate details other than the implementation. We hypothesize what
vulnerabilities may be present, creating Issue entries, and for each we follow the following Issue
Investigation and Remediation process.

Security Audit Report | Mina Signer SDK + StakingPower Wallet | Mina Foundation 23
21 September 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://leastauthority.com/security-consulting/

Documenting Results
We follow a conservative, transparent process for analyzing potential security vulnerabilities and seeing
them through successful remediation. Whenever a potential issue is discovered, we immediately create
an Issue entry for it in this document, even though we have not yet verified the feasibility and impact of
the issue. This process is conservative because we document our suspicions early even if they are later
shown to not represent exploitable vulnerabilities. We generally follow a process of first documenting the
suspicion with unresolved questions, then confirming the issue through code analysis, live
experimentation, or automated tests. Code analysis is the most tentative, and we strive to provide test
code, log captures, or screenshots demonstrating our confirmation. After this we analyze the feasibility of
an attack in a live system.

Suggested Solutions
We search for immediate mitigations that live deployments can take, and finally we suggest the
requirements for remediation engineering for future releases. The mitigation and remediation
recommendations should be scrutinized by the developers and deployment engineers, and successful
mitigation and remediation is an ongoing collaborative process after we deliver our report, and before the
details are made public.

Responsible Disclosure
Before our report or any details about our findings and suggested solutions are made public, we like to
work with your team to find reasonable outcomes that can be addressed as soon as possible without an
overly negative impact on pre-existing plans. Although the handling of issues must be done on a
case-by-case basis, we always like to agree on a timeline for resolution that balances the impact on the
users and the needs of your project team. We take this agreed timeline into account before publishing any
reports to avoid the necessity for full disclosure.

Security Audit Report | Mina Signer SDK + StakingPower Wallet | Mina Foundation 24
21 September 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

