Skip to main content

Induced Resistance and Defense Primings

  • Chapter
  • First Online:
Molecular Approaches for Sustainable Insect Pest Management

Abstract

Priming is a phenomenon in which plants upon treatment with a resistance-inducing agent acquire an enhanced defensive capacity to respond faster and/or stronger at the moment that the plant is exposed to biotic or abiotic stresses. The priming can be found in different induced resistance systems to decrease lag time from the start of defense activation to the point when the defense is fully activated as well as to decrease the trade-off between induced resistance and the cost of defense activation. In addition, numerous chemical compounds, often of natural origin, have been found to act as priming stimuli. Priming also contributes in the existing relationship between members of a tritrophic system when plants upon damage by herbivorous arthropods release a mixture of HIPVs, green leaf volatiles (GLVs), terpenoids, and others to attract natural enemies of the herbivores. Interestingly, when there is a strong selection pressure on plants, they can evolve mechanisms by which they pass the parental memory of herbivory to their progeny for enhanced defense, known as transgenerational priming. Heavy metals and some mineral elements like silicon can lead to priming in plants. Among different priming approaches, seed priming in which seeds expose to specific compounds to enhance seed germination was found to be a promising approach because it should enable seedlings to mount a robust immune response and thereby remain disease-free (or only moderately infected) for a long time with minimal labor and expense. However, although it has been reported that priming compared to elicitation generally results in low fitness costs for the plant, it could lead to the downregulation of some resistance pathways or could sensitize plants such that they respond to false alarm signals. Overall, new findings on priming and other upcoming techniques like symbiotic control and endophytes open a new era regarding biological control concepts in which not only natural enemies and pests are important, but also other factors like microorganisms that are in association with natural enemies (endosymbionts) and plants (endophytes) have a main important contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Lipoxygenase.

  2. 2.

    Plant defensin 1.2.

References

  • Aamir M, Rai KK, Zehra A, Dubey MK, Kumar S, Shukla V, Upadhyay RS (2020) Microbial bioformulation-based plant biostimulants: a plausible approach toward next generation of sustainable agriculture. In: Microbial endophytes. Woodhead Publishing, Duxford, pp 195–225

    Chapter  Google Scholar 

  • Abe H, Ohnishi J, Narusaka M, Seo S, Narusaka Y, Tsuda S, Kobayashi M (2008) Function of jasmonate in response and tolerance of Arabidopsis to thrip feeding. Plant Cell Physiol 49(1):68–80

    Article  CAS  PubMed  Google Scholar 

  • Abe H, Shimoda T, Ohnishi J, Kugimiya S, Narusaka M, Seo S, Narusaka Y, Tsuda S, Kobayashi M (2009) Jasmonate-dependent plant defense restricts thrips performance and preference. BMC Plant Biol 9(1):1–12

    Article  CAS  Google Scholar 

  • Adesemoye AO, Torbert HA, Kloepper JW (2009) Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb Ecol 58(4):921–929

    Article  CAS  PubMed  Google Scholar 

  • Afzal I, Rehman HU, Naveed M, Basra SMA (2016) Recent advances in seed enhancements. In: New challenges in seed biology-basic and translational research driving seed technology. InTech, London, pp 47–74

    Google Scholar 

  • Agrawal AA, Strauss SY, Stout MJ (1999) Costs of induced responses and tolerance to herbivory in male and female fitness components of wild radish. Evolution 53(4):1093–1104

    Article  PubMed  Google Scholar 

  • Agut B, Pastor V, Jaques JA, Flors V (2018) Can plant defense mechanisms provide new approaches for the sustainable control of the two-spotted spider mite Tetranychus urticae? Int J Mol Sci 19(2):614

    Article  PubMed Central  CAS  Google Scholar 

  • Ahmad S, Gordon-Weeks RUTH, Pickett J, Ton J (2010) Natural variation in priming of basal resistance: from evolutionary origin to agricultural exploitation. Mol Plant Pathol 11(6):817–827

    PubMed  PubMed Central  Google Scholar 

  • Akello J, Sikora R (2012) Systemic acropedal influence of endophyte seed treatment on Acyrthosiphon pisum and Aphis fabae offspring development and reproductive fitness. Biol Control 61(3):215–221

    Article  Google Scholar 

  • Akello J, Chabi-Olaye A, Sikora RA (2017) Insect antagonistic bio-inoculants for natural control of leaf-mining insect pests of French beans. Afr Crop Sci J 25(2):237–251

    Article  Google Scholar 

  • Alba JM, Schimmel BC, Glas JJ, Ataide LM, Pappas ML, Villarroel CA, Schuurink RC, Sabelis MW, Kant MR (2015) Spider mites suppress tomato defenses downstream of jasmonate and salicylate independently of hormonal crosstalk. New Phytol 205(2):828–840

    Article  CAS  PubMed  Google Scholar 

  • Alexandersson E, Mulugeta T, Lankinen Å, Liljeroth E, Andreasson E (2016) Plant resistance inducers against pathogens in Solanaceae species—from molecular mechanisms to field application. Int J Mol Sci 17(10):1673

    Article  PubMed Central  CAS  Google Scholar 

  • Alhousari F, Greger M (2018) Silicon and mechanisms of plant resistance to insect pests. Plants 7(2):33

    Article  CAS  PubMed Central  Google Scholar 

  • Alvarez ME, Pennell RI, Meijer PJ, Ishikawa A, Dixon RA, Lamb C (1998) Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell 92(6):773–784

    Article  CAS  PubMed  Google Scholar 

  • Arman M, Qader SAU (2012) Structural analysis of kappa-carrageenan isolated from Hypnea musciformis (red algae) and evaluation as an elicitor of plant defense mechanism. Carbohydr Polym 88(4):1264–1271

    Article  CAS  Google Scholar 

  • Armengaud P, Breitling R, Amtmann A (2010) Coronatine-insensitive 1 (COI1) mediates transcriptional responses of Arabidopsis thaliana to external potassium supply. Mol Plant 3(2):390–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arora NK, Khare E, Maheshwari DK (2010) Plant growth promoting rhizobacteria: constraints in bioformulation, commercialization, and future strategies. In: Plant growth and health promoting bacteria. Springer, Berlin, pp 97–116

    Chapter  Google Scholar 

  • Assis FAE, Jair CM, Luis CPS, Jonas F, Amanda MN, Cristiana SA (2012) Inducers of resistance in potato and its effects on defoliators and predatory insects. Rev Colomb Entomol 2012:30–34

    Google Scholar 

  • Baghazadeh Daryaii L, Samsampour D, Bagheri A, Sohrabipour J (2021) High content of heavy metals in seaweed species: a case study in the Persian Gulf and the Gulf of Oman in southern coast of Iran. J Appl Physiol, in press

    Google Scholar 

  • Bagheri A, Fathipour Y, Askari-Seyahooei M, Zeinalabedini M (2018) Ommatissus lybicus (Hemiptera: Tropiduchidae), an economically important pest of date palm (Arecaceae) with highly divergent populations. Can Entomol 150(3):378

    Article  Google Scholar 

  • Baldwin IT, Halitschke R, Paschold A, Von Dahl CC, Preston CA (2006) Volatile signaling in plant-plant interactions: “talking trees” in the genomics era. Science 311(5762):812–815

    Article  CAS  PubMed  Google Scholar 

  • Bansal R, Hulbert S, Schemerhorn B, Reese JC, Whitworth RJ, Stuart JJ, Chen MS (2011) Hessian fly-associated bacteria: transmission, essentiality, and composition. PLoS One 6(8):e23170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bashan Y, de Bashan LE, Prabhu SR, Hernandez JP (2014) Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil 378(1–2):1–33

    Article  CAS  Google Scholar 

  • Beckers GJ, Conrath U (2007) Priming for stress resistance: from the lab to the field. Curr Opin Plant Biol 10(4):425–431

    Article  PubMed  Google Scholar 

  • Begum MM, Sariah M, Puteh AB, Abidin MZ, Rahman MA, Siddiqui Y (2010) Field performance of bio-primed seeds to suppress Colletotrichum truncatum causing damping-off and seedling stand of soybean. Biol Control 53(1):18–23

    Article  Google Scholar 

  • Berger SL (2007) The complex language of chromatin regulation during transcription. Nature 447(7143):407–412

    Article  CAS  PubMed  Google Scholar 

  • Bernards MA, Båstrup-Spohr L (2008) Phenylpropanoid metabolism induced by wounding and insect herbivory. In: Induced plant resistance to herbivory. Springer, Dordrecht, pp 189–211

    Chapter  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28(4):1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Björkman C, Dalin P, Ahrné K (2008) Leaf trichome responses to herbivory in willows: induction, relaxation and costs. New Phytol 179(1):176–184

    Article  PubMed  Google Scholar 

  • Bostock RM (2005) Signal crosstalk and induced resistance: straddling the line between cost and benefit. Annu Rev Phytopathol 43:545–580

    Article  CAS  PubMed  Google Scholar 

  • Bowling SA, Clarke JD, Liu Y, Klessig DF, Dong X (1997) The cpr5 mutant of Arabidopsis expresses both NPR1-dependent and NPR1-independent resistance. Plant Cell 9(9):1573–1584

    CAS  PubMed  PubMed Central  Google Scholar 

  • Calvo P, Nelson L, Kloepper JW (2014) Agricultural uses of plant biostimulants. Plant Soil 383(1–2):3–41

    Article  CAS  Google Scholar 

  • Campos ML, Kang JH, Howe GA (2014) Jasmonate-triggered plant immunity. J Chem Ecol 40(7):657–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cedar H, Bergman Y (2009) Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 10(5):295–304

    Article  CAS  PubMed  Google Scholar 

  • Champigny MJ, Cameron RK (2009) Action at a distance: long-distance signals in induced resistance. Adv Bot Res 51:123–171

    Article  CAS  Google Scholar 

  • Chassot C, Buchala A, Schoonbeek HJ, Métraux JP, Lamotte O (2008) Wounding of Arabidopsis leaves causes a powerful but transient protection against Botrytis infection. Plant J 55(4):555–567

    Article  CAS  PubMed  Google Scholar 

  • Chester KS (1933) The problem of acquired physiological immunity in plants. Q Rev Biol 8(3):275–324

    Article  Google Scholar 

  • Choudhary DK, Johri BN (2009) Interactions of Bacillus spp. and plants—with special reference to induced systemic resistance (ISR). Microbiol Res 164(5):493–513

    Article  CAS  PubMed  Google Scholar 

  • Chung SH, Rosa C, Scully ED, Peiffer M, Tooker JF, Hoover K, Luthe DS, Felton GW (2013) Herbivore exploits orally secreted bacteria to suppress plant defenses. Proc Natl Acad Sci 110(39):15728–15733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cipollini DF (2002) Does competition magnify the fitness costs of induced responses in Arabidopsis thaliana? A manipulative approach. Oecologia 131(4):514–520

    Article  PubMed  Google Scholar 

  • Cipollini D, Purrington CB, Bergelson J (2003) Costs of induced responses in plants. Basic Appl Ecol 4(1):79–89

    Article  Google Scholar 

  • Cohen YR (2002) β-Aminobutyric acid-induced resistance against plant pathogens. Plant Dis 86(5):448–457

    Article  CAS  PubMed  Google Scholar 

  • Connick VJ (2011) The impact of silicon fertilisation on the chemical ecology of the grapevine, Vitis vinifera; constitutive and induced chemical defenses against arthropod pests and their natural enemies. Charles Sturt University

    Google Scholar 

  • Conrath U (2009) Priming of induced plant defense responses. Adv Bot Res 51:361–395

    Article  CAS  Google Scholar 

  • Conrath U (2011) Molecular aspects of defense priming. Trends Plant Sci 16(10):524–531

    Article  CAS  PubMed  Google Scholar 

  • Conrath U, Chen Z, Ricigliano JR, Klessig DF (1995) Two inducers of plant defense responses, 2, 6-dichloroisonicotinec acid and salicylic acid, inhibit catalase activity in tobacco. Proc Natl Acad Sci 92(16):7143–7147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conrath U, Pieterse CMJ, Mauch-Mani B (2002) Priming in plant-pathogen interactions. Trends Plant Sci 7:210–216

    Article  CAS  PubMed  Google Scholar 

  • Conrath U, Linke C, Jeblick W, Geigenberger P, Quick WP, Neuhaus HE (2003) Enhanced resistance to Phytophthora infestans and Alternaria solani in leaves and tubers, respectively, of potato plants with decreased activity of the plastidic ATP/ADP transporter. Planta 217(1):75–83

    Article  CAS  PubMed  Google Scholar 

  • Conrath U, Beckers GJ, Flors V, García-Agustín P, Jakab G, Mauch F, Newman MA, Pieterse CM, Poinssot B, Pozo MJ, Pugin A (2006) Priming: getting ready for battle. Mol Plant-Microbe Interact 19(10):1062–1071

    Article  CAS  PubMed  Google Scholar 

  • Conrath U, Beckers GJ, Langenbach CJ, Jaskiewicz MR (2015) Priming for enhanced defense. Annu Rev Phytopathol 53:97–119

    Article  CAS  PubMed  Google Scholar 

  • Córdova-Campos O, Adame-Álvarez RM, Acosta-Gallegos JA, Heil M (2012) Domestication affected the basal and induced disease resistance in common bean (Phaseolus vulgaris). Eur J Plant Pathol 134(2):367–379

    Article  Google Scholar 

  • Costa RR, Moraes JC, DaCosta RR (2011) Feeding behaviour of the greenbug Schizaphis graminum on wheat plants treated with imidacloprid and/or silicon. J Appl Entomol 135(1–2):115–120

    Article  CAS  Google Scholar 

  • Cox M, Wong B (2013) Biological crop chemistry primer: green shoots through green products. Piper Jaffray Industry Note. http://library.constantcontact.com/download/get/file/1102591137375-215/Cox+Industry+Note+-+Agriculture, vol 8, p 13

  • Crisp PA, Ganguly D, Eichten SR, Borevitz JO, Pogson BJ (2016) Reconsidering plant memory: intersections between stress recovery, RNA turnover, and epigenetics. Sci Adv 2(2):e1501340

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • da Silva Araújo AE, Baldani VLD, de Souza GP, Pereira JA, Baldani JI (2013) Response of traditional upland rice varieties to inoculation with selected diazotrophic bacteria isolated from rice cropped at the Northeast region of Brazil. Appl Soil Ecol 64:49–55

    Article  Google Scholar 

  • Davies PJ (2010) The plant hormones: their nature, occurrence, and functions. In: Plant hormones. Springer, Dordrecht, pp 1–15

    Chapter  Google Scholar 

  • De Vos M, Van Oosten VR, Van Poecke RM, Van Pelt JA, Pozo MJ, Mueller MJ, Buchala AJ, Métraux JP, Van Loon LC, Dicke M, Pieterse CM (2005) Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Mol Plant-Microbe Interact 18(9):923–937

    Article  PubMed  CAS  Google Scholar 

  • Delory BM, Delaplace P, Fauconnier ML, Du Jardin P (2016) Root-emitted volatile organic compounds: can they mediate belowground plant-plant interactions? Plant Soil 402(1–2):1–26

    Article  CAS  Google Scholar 

  • Dempsey DMA, Klessig DF (2012) SOS—too many signals for systemic acquired resistance? Trends Plant Sci 17(9):538–545

    Article  CAS  PubMed  Google Scholar 

  • Derksen H, Rampitsch C, Daayf F (2013) Signaling cross-talk in plant disease resistance. Plant Sci 207:79–87

    Article  CAS  PubMed  Google Scholar 

  • Dewen Q, Yijie D, Yi Z, Shupeng L, Fachao S (2017) Plant immunity inducer development and application. Mol Plant-Microbe Interact 30(5):355–360

    Article  PubMed  Google Scholar 

  • Disi JO, Zebelo S, Kloepper JW, Fadamiro H (2018) Seed inoculation with beneficial rhizobacteria affects European corn borer (Lepidoptera: Pyralidae) oviposition on maize plants. Entomol Sci 21(1):48–58

    Article  Google Scholar 

  • Dolch R, Tscharntke T (2000) Defoliation of alders (Alnus glutinosa) affects herbivory by leaf beetles on undamaged neighbours. Oecologia 125(4):504–511

    Article  PubMed  Google Scholar 

  • Dong X (2001) Genetic dissection of systemic acquired resistance. Curr Opin Plant Biol 4(4):309–314

    Article  CAS  PubMed  Google Scholar 

  • du Jardin P (2012) The science of plant biostimulants—a bibliographic analysis. Ad hoc study report to the European commission DG ENTR. 2012. http://ec.europa.eu/enterprise/sectors/chemicals/files/fertilizers/final_report_bio_2012_en.pdf

  • Du Jardin P (2015) Plant biostimulants: definition, concept, main categories and regulation. Sci Hortic 196:3–14

    Article  CAS  Google Scholar 

  • El-Bab TSF, El-Mohamedy RSR (2013) Bio-priming seed treatment for suppressive root rot soil borne pathogens and improvement growth and yield of green bean (Phaseulas vulgaris L.) in new cultivated lands. J Appl Sci Res 9(7):4378–4387

    Google Scholar 

  • Enebe MC, Babalola OO (2019) The impact of microbes in the orchestration of plants’ resistance to biotic stress: a disease management approach. Appl Microbiol Biotechnol 103(1):9–25

    Article  CAS  PubMed  Google Scholar 

  • Engelberth J, Alborn HT, Schmelz EA, Tumlinson JH (2004) Airborne signals prime plants against insect herbivore attack. Proc Natl Acad Sci 101(6):1781–1785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Epstein E (2009) Silicon: its manifold roles in plants. Ann Appl Biol 155(2):155–160

    Article  CAS  Google Scholar 

  • Erb M, Veyrat N, Robert CA, Xu H, Frey M, Ton J, Turlings TC (2015) Indole is an essential herbivore-induced volatile priming signal in maize. Nat Commun 6(1):1–10

    Article  CAS  Google Scholar 

  • Escobar-Bravo R, Klinkhamer PG, Leiss KA (2017) Induction of jasmonic acid-associated defenses by thrips alters host suitability for conspecifics and correlates with increased trichome densities in tomato. Plant Cell Physiol 58(3):622–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Exley C (1998) Silicon in life: a bioinorganic solution to bioorganic essentiality. J Inorg Biochem 69(3):139–144

    Article  CAS  Google Scholar 

  • Eyles A, Bonello P, Ganley R, Mohammed C (2010) Induced resistance to pests and pathogens in trees. New Phytol 185(4):893–908

    Article  PubMed  Google Scholar 

  • Facchini PJ (2001) Alkaloid biosynthesis in plants: biochemistry, cell biology, molecular regulation, and metabolic engineering applications. Annu Rev Plant Biol 52(1):29–66

    Article  CAS  Google Scholar 

  • Faeth SH, Hammon KE (1996) Fungal endophytes and phytochemistry of oak foliage: determinants of oviposition preference of leafminers? Oecologia 108(4):728–736

    Article  PubMed  Google Scholar 

  • Fahimi A, Ashouri A, Ahmadzadeh M, Hoseini Naveh V, Asgharzadeh A, Maleki F, Felton GW (2014) Effect of PGPR on population growth parameters of cotton aphid. Arch Phytopathol Plant Protect 47(11):1274–1285

    Article  Google Scholar 

  • Fauteux F, Rémus-Borel W, Menzies JG, Bélanger RR (2005) Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiol Lett 249(1):1–6

    Article  CAS  PubMed  Google Scholar 

  • Ferry N, Stavroulakis S, Guan W, Davison GM, Bell HA, Weaver RJ, Down RE, Gatehouse JA, Gatehouse AM (2011) Molecular interactions between wheat and cereal aphid (Sitobion avenae): analysis of changes to the wheat proteome. Proteomics 11(10):1985–2002

    Article  CAS  PubMed  Google Scholar 

  • Franceschi VR, Krokene P, Christiansen E, Krekling T (2005) Anatomical and chemical defenses of conifer bark against bark beetles and other pests. New Phytol 167(2):353–376

    Article  CAS  PubMed  Google Scholar 

  • Frew A, Powell JR, Hiltpold I, Allsopp PG, Sallam N, Johnson SN (2017) Host plant colonisation by arbuscular mycorrhizal fungi stimulates immune function whereas high root silicon concentrations diminish growth in a soil-dwelling herbivore. Soil Biol Biochem 112:117–126

    Article  CAS  Google Scholar 

  • Glas JJ, Alba JM, Simoni S, Villarroel CA, Stoops M, Schimmel BC, Schuurink RC, Sabelis MW, Kant MR (2014) Defense suppression benefits herbivores that have a monopoly on their feeding site but can backfire within natural communities. BMC Biol 12(1):98

    Article  PubMed  PubMed Central  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Gill R, Trivedi DK, Anjum NA, Sharma KK, Ansari MW, Ansari AA, Johri AK, Prasad R, Pereira E, Varma A (2016) Piriformospora indica: potential and significance in plant stress tolerance. Front Microbiol 7:332

    Article  PubMed  PubMed Central  Google Scholar 

  • Goellner K, Conrath U (2008) Priming: it’s all the world to induced disease resistance. Eur J Plant Pathol 121(3):233–242

    Article  Google Scholar 

  • Goggin FL (2007) Plant–aphid interactions: molecular and ecological perspectives. Curr Opin Plant Biol 10(4):399–408

    Article  CAS  PubMed  Google Scholar 

  • Gomes FB, Moraes JCD, Santos CDD, Goussain MM (2005) Resistance induction in wheat plants by silicon and aphids. Sci Agric 62(6):547–551

    Article  CAS  Google Scholar 

  • Gordy JW, Leonard BR, Blouin D, Davis JA, Stout MJ (2015) Comparative effectiveness of potential elicitors of plant resistance against Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae) in four crop plants. PLoS One 10(9):e0136689

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gould N, Reglinski T, Spiers M, Taylor JT (2008) Physiological trade-offs associated with methyl jasmonate-induced resistance in Pinus radiata. Can J For Res 38(4):677–684

    Article  Google Scholar 

  • Gozzo F, Faoro F (2013) Systemic acquired resistance (50 years after discovery): moving from the lab to the field. J Agric Food Chem 61(51):12473–12491

    Article  CAS  PubMed  Google Scholar 

  • Green TR, Ryan CA (1972) Wound-induced proteinase inhibitor in plant leaves: a possible defense mechanism against insects. Science 175(4023):776–777

    Article  CAS  PubMed  Google Scholar 

  • Gully K (2019) The plant immune system: induction, memory and de-priming of defense responses by endogenous, exogenous and synthetic elicitors. Doctoral Dissertation, Université d’Angers

    Google Scholar 

  • Hackett SC, Karley AJ, Bennett AE (2013) Unpredicted impacts of insect endosymbionts on interactions between soil organisms, plants and aphids. Proc R Soc B Biol Sci 280(1768):20131275

    Article  Google Scholar 

  • Hammerschmidt R (1999) Induced disease resistance: how do induced plants stop pathogens? Physiol Mol Plant Pathol 55:77–84

    Article  CAS  Google Scholar 

  • Harfouche AL, Shivaji R, Stocker R, Williams PW, Luthe DS (2006) Ethylene signaling mediates a maize defense response to insect herbivory. Mol Plant-Microbe Interact 19(2):189–199

    Article  CAS  PubMed  Google Scholar 

  • Heidel AJ, Clarke JD, Antonovics J, Dong X (2004) Fitness costs of mutations affecting the systemic acquired resistance pathway in Arabidopsis thaliana. Genetics 168(4):2197–2206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heijari J, Nerg AM, Kainulainen P, Viiri H, Vuorinen M, Holopainen JK (2005) Application of methyl jasmonate reduces growth but increases chemical defense and resistance against Hylobius abietis in scots pine seedlings. Entomol Exp Appl 115(1):117–124

    Article  CAS  Google Scholar 

  • Heil M (2001) The ecological concept of costs of induced systemic resistance (ISR). Eur J Plant Pathol 107(1):137–146

    Article  Google Scholar 

  • Heil M, Baldwin IT (2002) Fitness costs of induced resistance: emerging experimental support for a slippery concept. Trends Plant Sci 7(2):61–67

    Article  CAS  PubMed  Google Scholar 

  • Heil M, Bostock RM (2002) Induced systemic resistance (ISR) against pathogens in the context of induced plant defenses. Ann Bot 89(5):503–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heil M, Bueno JCS (2007) Within-plant signaling by volatiles leads to induction and priming of an indirect plant defense in nature. Proc Natl Acad Sci 104(13):5467–5472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heil M, Kost C (2006) Priming of indirect defenses. Ecol Lett 9(7):813–817

    Article  PubMed  Google Scholar 

  • Heil M, Hilpert A, Kaiser W, Linsenmair KE (2000) Reduced growth and seed set following chemical induction of pathogen defense: does systemic acquired resistance (SAR) incur allocation costs? J Ecol 88(4):645–654

    Article  CAS  Google Scholar 

  • Helms AM, Ray S, Matulis NL, Kuzemchak MC, Grisales W, Tooker JF, Ali JG (2019) Chemical cues linked to risk: cues from below-ground natural enemies enhance plant defenses and influence herbivore behaviour and performance. Funct Ecol 33(5):798–808

    Article  Google Scholar 

  • Henry G, Thonart P, Ongena M (2012) PAMPs, MAMPs, DAMPs and others: an update on the diversity of plant immunity elicitors. BASE 16:257–268

    Google Scholar 

  • Hilker M, Kobs C, Varama M, Schrank K (2002) Insect egg deposition induces Pinus sylvestris to attract egg parasitoids. J Exp Biol 205(4):455–461

    Article  PubMed  Google Scholar 

  • Hodge S, Thompson GA, Powell G (2005) Application of DL-[beta]-aminobutyric acid (BABA) as a root drench to legumes inhibits the growth and reproduction of the pea aphid Acyrthosiphon pisum (Hemiptera: Aphididae). Bull Entomol Res 95(5):449

    Article  CAS  PubMed  Google Scholar 

  • Holeski LM, Jander G, Agrawal AA (2012) Transgenerational defense induction and epigenetic inheritance in plants. Trends Ecol Evol 27(11):618–626

    Article  PubMed  Google Scholar 

  • Horsfall JG, Dimond AE (1957) Interactions of tissue sugar, growth substances, and disease susceptibility. Zeitschrift für Pflanzenkrankheiten (Pflanzenpathologie) und Pflanzenschutz 64:415–421

    CAS  Google Scholar 

  • Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59:41–66

    Article  CAS  PubMed  Google Scholar 

  • Huong TTL, Padgham JL, Sikora RA (2009) Biological control of the rice root knot nematode Meloidogyne graminicola on rice, using endophytic and rhizosphere fungi. Int J Pest Manag 55:31–36

    Article  CAS  Google Scholar 

  • Jakab G, Ton J, Flors V, Zimmerli L, Métraux JP, Mauch-Mani B (2005) Enhancing Arabidopsis salt and drought stress tolerance by chemical priming for its abscisic acid responses. Plant Physiol 139(1):267–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jallow MF, Dugassa-Gobena D, Vidal S (2008) Influence of an endophytic fungus on host plant selection by a polyphagous moth via volatile spectrum changes. Arthropod Plant Interact 2(1):53–62

    Article  Google Scholar 

  • Jaskiewicz M, Conrath U, Peterhänsel C (2011) Chromatin modification acts as a memory for systemic acquired resistance in the plant stress response. EMBO Rep 12(1):50–55

    Article  CAS  PubMed  Google Scholar 

  • Johnson R, Ryan CA (1990) Wound-inducible potato inhibitor II genes: enhancement of expression by sucrose. Plant Mol Biol 14(4):527–536

    Article  CAS  PubMed  Google Scholar 

  • Johnson SN, Hallett PD, Gillespie TL, Halpin C (2010) Below-ground herbivory and root toughness: a potential model system using lignin-modified tobacco. Physiol Entomol 35(2):186–191

    Article  CAS  Google Scholar 

  • Jourdan E, Henry G, Duby F, Dommes J, Barthelemy JP, Thonart P, Ongena MARC (2009) Insights into the defense-related events occurring in plant cells following perception of surfactin-type lipopeptide from Bacillus subtilis. Mol Plant-Microbe Interact 22(4):456–468

    Article  CAS  PubMed  Google Scholar 

  • Jung HW, Tschaplinski TJ, Wang L, Glazebrook J, Greenberg JT (2009) Priming in systemic plant immunity. Science 324(5923):89–91

    Article  PubMed  CAS  Google Scholar 

  • Karban R (2011) The ecology and evolution of induced resistance against herbivores. Funct Ecol 25(2):339–347

    Article  Google Scholar 

  • Karban R, Baldwin IT, Baxter KJ, Laue G, Felton GW (2000) Communication between plants: induced resistance in wild tobacco plants following clipping of neighboring sagebrush. Oecologia 125(1):66–71

    Article  CAS  PubMed  Google Scholar 

  • Kauss H, Theisinger-Hinkel E, Mindermann R, Conrath U (1992) Dichloroisonicotinic and salicylic acid, inducers of systemic acquired resistance, enhance fungal elicitor responses in parsley cells. Plant J 2:655–660

    Article  CAS  Google Scholar 

  • Keeling CI, Bohlmann J (2006) Genes, enzymes and chemicals of terpenoid diversity in the constitutive and induced defense of conifers against insects and pathogens. New Phytol 170(4):657–675

    Article  CAS  PubMed  Google Scholar 

  • Keen NT, Bruegger B (1977) Phytoalexins and chemicals that elicit their production in plants

    Google Scholar 

  • Kerchev P, van der Meer T, Sujeeth N, Verlee A, Stevens CV, Van Breusegem F, Gechev T (2020) Molecular priming as an approach to induce tolerance against abiotic and oxidative stresses in crop plants. Biotechnol Adv 40:107503

    Article  CAS  PubMed  Google Scholar 

  • Kessler A, Halitschke R, Diezel C, Baldwin IT (2006) Priming of plant defense responses in nature by airborne signaling between Artemisia tridentata and Nicotiana attenuata. Oecologia 148(2):280–292

    Article  PubMed  Google Scholar 

  • Kessmann H, Staub T, Hofmann C, Maetzke T, Herzog J, Ward E, Uknes S, Ryals J (1994) Induction of systemic acquired disease resistance in plants by chemicals. Annu Rev Phytopathol 32(1):439–459

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Felton GW (2013) Priming of antiherbivore defensive responses in plants. Insect Sci 20(3):273–285

    Article  CAS  PubMed  Google Scholar 

  • Kishimoto K, Matsui K, Ozawa R, Takabayashi J (2005) Volatile C6-aldehydes and allo-ocimene activate defense genes and induce resistance against Botrytis cinerea in Arabidopsis thaliana. Plant Cell Physiol 46(7):1093–1102

    Article  CAS  PubMed  Google Scholar 

  • Klarzynski O, Descamps V, Plesse B, Yvin JC, Kloareg B, Fritig B (2003) Sulfated fucan oligosaccharides elicit defense responses in tobacco and local and systemic resistance against tobacco mosaic virus. Mol Plant-Microbe Interact 16(2):115–122

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi A, Tai A, Kanzaki H, Kawazu K (1993) Elicitor-active oligosaccharides from algal laminaran stimulate the production of antifungal compounds in alfalfa. Zeitschrift für Naturforschung C 48(7–8):575–579

    Article  CAS  Google Scholar 

  • Kohler A, Schwindling S, Conrath U (2002) Benzothiadiazole-induced priming for potentiated responses to pathogen infection, wounding, and infiltration of water into leaves requires the NPR1/NIM1 gene in Arabidopsis. Plant Physiol 128(3):1046–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krokene P, Nagy NE, Solheim H (2008) Methyl jasmonate and oxalic acid treatment of Norway spruce: anatomically based defense responses and increased resistance against fungal infection. Tree Physiol 28(1):29–35

    Article  CAS  PubMed  Google Scholar 

  • Kuć J (1987) Translocated signals for plant immunization. Ann N Y Acad Sci 494(1):221–223

    Article  Google Scholar 

  • Kvedaras OL, Keeping MG (2007) Silicon impedes stalk penetration by the borer Eldana saccharina in sugarcane. Entomol Exp Appl 125(1):103–110

    Article  CAS  Google Scholar 

  • Kvedaras OL, An M, Choi YS, Gurr GM (2010) Silicon enhances natural enemy attraction and biological control through induced plant defenses. Bull Entomol Res 100(3):367

    Article  CAS  PubMed  Google Scholar 

  • Laing MD, Gatarayiha MC, Adandonon A (2006) Silicon use for pest control in agriculture: a review. In Proceedings of the South African Sugar Technologists’ Association, vol 80, pp 278–286

    Google Scholar 

  • Lewis EE, Campbell J, Griffin C, Kaya H, Peters A (2006) Behavioral ecology of entomopathogenic nematodes. Biol Control 38(1):66–79

    Article  Google Scholar 

  • Li C, Williams MM, Loh YT, Lee GI, Howe GA (2002) Resistance of cultivated tomato to cell content-feeding herbivores is regulated by the octadecanoid-signaling pathway. Plant Physiol 130(1):494–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Meng L, Xing G, Li B (2016) Constitutive and induced resistance in soybean interact to affect the performance of a herbivore and its parasitoid. Biol Control 101:145–151

    Article  Google Scholar 

  • Liang Y, Nikolic M, Bélanger R, Gong H, Song A (2015) Effect of silicon on crop growth, yield and quality. In: Silicon in agriculture. Springer, Dordrecht, pp 209–223

    Chapter  Google Scholar 

  • Linke C, Conrath U, Jeblick W, Betsche T, Mahn A, Düring K, Neuhaus HE (2002) Inhibition of the plastidic ATP/ADP transporter protein primes potato tubers for augmented elicitation of defense responses and enhances their resistance against Erwinia carotovora. Plant Physiol 129(4):1607–1615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Zhu J, Zhang P, Han L, Reynolds OL, Zeng R, Wu J, Shao Y, You M, Gurr GM (2017) Silicon supplementation alters the composition of herbivore induced plant volatiles and enhances attraction of parasitoids to infested rice plants. Front Plant Sci 8:1265

    Article  PubMed  PubMed Central  Google Scholar 

  • Lopez L, Camas A, Shivaji R, Ankala A, Williams P, Luthe D (2007) Mir1-CP, a novel defense cysteine protease accumulates in maize vascular tissues in response to herbivory. Planta 226(2):517–527

    Article  CAS  PubMed  Google Scholar 

  • Lopez A, Ramírez V, García-Andrade J, Flors V, Vera P (2011) The RNA silencing enzyme RNA polymerase V is required for plant immunity. PLoS Genet 7(12):e1002434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Louis J, Shah J (2015) Plant defense against aphids: the PAD4 signalling nexus. J Exp Bot 66(2):449–454

    Article  CAS  PubMed  Google Scholar 

  • Louis J, Basu S, Varsani S, Castano-Duque L, Jiang V, Williams WP, Felton GW, Luthe DS (2015) Ethylene contributes to maize insect resistance1-mediated maize defense against the phloem sap-sucking corn leaf aphid. Plant Physiol 169(1):313–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu J, Robert CAM, Riemann M, Cosme M, Mène-Saffrané L, Massana J, Stout MJ, Lou Y, Gershenzon J, Erb M (2015) Induced jasmonate signaling leads to contrasting effects on root damage and herbivore performance. Plant Physiol 167(3):1100–1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luna E, Ton J (2012) The epigenetic machinery controlling transgenerational systemic acquired resistance. Plant Signal Behav 7(6):615–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luna E, Bruce TJ, Roberts MR, Flors V, Ton J (2012) Next-generation systemic acquired resistance. Plant Physiol 158(2):844–853

    Article  CAS  PubMed  Google Scholar 

  • Ma JF (2004) Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci Plant Nutr 50(1):11–18

    Article  CAS  Google Scholar 

  • Ma JF, Takahashi E (2002) Soil, fertilizer, and plant silicon research in Japan. Elsevier, Amsterdam

    Google Scholar 

  • Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci 11(8):392–397

    Article  CAS  PubMed  Google Scholar 

  • Manosalva P, Manohar M, Von Reuss SH, Chen S, Koch A, Kaplan F, Choe A, Micikas RJ, Wang X, Kogel KH, Sternberg PW (2015) Conserved nematode signalling molecules elicit plant defenses and pathogen resistance. Nat Commun 6(1):1–8

    Article  CAS  Google Scholar 

  • Marolleau B, Gaucher M, Heintz C, Degrave A, Warneys R, Orain G, Lemarquand A, Brisset MN (2017) When a plant resistance inducer leaves the lab for the field: integrating ASM into routine apple protection practices. Front Plant Sci 8:1938

    Article  PubMed  PubMed Central  Google Scholar 

  • Martinez-Medina A, Flors V, Heil M, Mauch-Mani B, Pieterse CM, Pozo MJ, Ton J, van Dam NM, Conrath U (2016) Recognizing plant defense priming. Trends Plant Sci 21(10):818–822

    Article  CAS  PubMed  Google Scholar 

  • Mathre DE, Callan NW, Johnston RH, Miller JB, Schwend A (1994) Factors influencing the control of Pythium ultimum-induced seed decay by seed treatment with Pseudomonas aureofaciens AB254. Crop Prot 13(4):301–307

    Article  Google Scholar 

  • Matzke M, Kanno T, Huettel B, Daxinger L, Matzke AJ (2007) Targets of RNA-directed DNA methylation. Curr Opin Plant Biol 10(5):512–519

    Article  CAS  PubMed  Google Scholar 

  • Mauch F, Mauch-Mani B, Gaille C, Kull B, Haas D, Reimmann C (2001) Manipulation of salicylate content in Arabidopsis thaliana by the expression of an engineered bacterial salicylate synthase. Plant J 25(1):67–77

    CAS  PubMed  Google Scholar 

  • Mauch-Mani B, Baccelli I, Luna E, Flors V (2017) Defense priming: an adaptive part of induced resistance. Annu Rev Plant Biol 68:485–512

    Article  CAS  PubMed  Google Scholar 

  • Maurya AK, Pazouki L, Frost CJ (2019) Plant seeds are primed by herbivore-induced plant volatiles. bioRxiv:522839. https://doi.org/10.1101/522839

  • Mayoral JG, Hussain M, Joubert DA, Iturbe-Ormaetxe I, O’Neill SL, Asgari S (2014) Wolbachia small noncoding RNAs and their role in cross-kingdom communications. Proc Natl Acad Sci 111(52):18721–18726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazid M, Khan TA, Mohammad F (2011) Role of secondary metabolites in defense mechanisms of plants. Biol Med 3(2):232–249

    CAS  Google Scholar 

  • McCormick AC, Unsicker SB, Gershenzon J (2012) The specificity of herbivore-induced plant volatiles in attracting herbivore enemies. Trends Plant Sci 17(5):303–310

    Article  CAS  Google Scholar 

  • Mendes R, Kruijt M, De Bruijn I, Dekkers E, van der Voort M, Schneider JH, Piceno YM, DeSantis TZ, Andersen GL, Bakker PA, Raaijmakers JM (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332(6033):1097–1100

    Article  CAS  PubMed  Google Scholar 

  • Mewis I, Appel HM, Hom A, Raina R, Schultz JC (2005) Major signaling pathways modulate Arabidopsis glucosinolate accumulation and response to both phloem-feeding and chewing insects. Plant Physiol 138(2):1149–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mire GL, Nguyen M, Fassotte B, Jardin P, Verheggen F, Delaplace P, Jijakli MH (2016) Implementing plant biostimulants and biocontrol strategies in the agroecological management of cultivated ecosystems. A review. Biotechnol Agron Soc Environ. https://doi.org/10.25518/1780-4507.12717

  • Moran PJ, Thompson GA (2001) Molecular responses to aphid feeding in Arabidopsis in relation to plant defense pathways. Plant Physiol 125(2):1074–1085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mumm R, Schrank K, Wegener R, Schulz S, Hilker M (2003) Chemical analysis of volatiles emitted by Pinus sylvestris after induction by insect oviposition. J Chem Ecol 29(5):1235–1252

    Article  CAS  PubMed  Google Scholar 

  • Mur LA, Naylor G, Warner SA, Sugars JM, White RF, Draper J (1996) Salicylic acid potentiates defense gene expression in tissue exhibiting acquired resistance to pathogen attack. Plant J 9(4):559–571

    Article  CAS  Google Scholar 

  • Muvea AM, Meyhöfer R, Subramanian S, Poehling HM, Ekesi S, Maniania NK (2014) Colonization of onions by endophytic fungi and their impacts on the biology of Thrips tabaci. PLoS One 9(9):e108242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mysore KS, Ryu CM (2004) Nonhost resistance: how much do we know? Trends Plant Sci 9(2):97–104

    Article  CAS  PubMed  Google Scholar 

  • Nalam VJ, Keeretaweep J, Sarowar S, Shah J (2012) Root-derived oxylipins promote green peach aphid performance on Arabidopsis foliage. Plant Cell 24(4):1643–1653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nalam VJ, Shah J, Nachappa P (2013) Emerging role of roots in plant responses to aboveground insect herbivory. Insect Sci 20(3):286–296

    Article  CAS  PubMed  Google Scholar 

  • Namdeo A, Patil S, Fulzele DP (2002) Influence of fungal elicitors on production of ajmalicine by cell cultures of Catharanthus roseus. Biotechnol Prog 18(1):159–162

    Article  CAS  PubMed  Google Scholar 

  • Nanda AK, Andrio E, Marino D, Pauly N, Dunand C (2010) Reactive oxygen species during plant-microorganism early interactions. J Integr Plant Biol 52(2):195–204

    Article  CAS  PubMed  Google Scholar 

  • Nandi A, Welti R, Shah J (2004) The Arabidopsis thaliana dihydroxyacetone phosphate reductase gene SUPPRESSOR OF FATTY ACID DESATURASE DEFICIENCY1 is required for glycerolipid metabolism and for the activation of systemic acquired resistance. Plant Cell 16(2):465–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nazaralian S, Majd A, Irian S, Najafi F, Ghahremaninejad F, Landberg T, Greger M (2017) Comparison of silicon nanoparticles and silicate treatments in fenugreek. Plant Physiol Biochem 115:25–33

    Article  CAS  PubMed  Google Scholar 

  • Neamatollahi E, Souhani-Darban A (2010) Investigation of hydropriming and osmopriming effects on canola (Brassica napus L.) cultivars. Int J Appl Agric Res 5:87–92

    Google Scholar 

  • Nie P, Li X, Wang S, Guo J, Zhao H, Niu D (2017) Induced systemic resistance against Botrytis cinerea by Bacillus cereus AR156 through a JA/ET-and NPR1-dependent signaling pathway and activates PAMP-triggered immunity in Arabidopsis. Front Plant Sci 8:238

    Article  PubMed  PubMed Central  Google Scholar 

  • Nikpay A, Nejadian ES (2014) Field applications of silicon-based fertilizers against sugarcane yellow mite Oligonychus sacchari. Sugar Tech 16(3):319–324

    Article  CAS  Google Scholar 

  • Nombela G, Muñiz M (2009) Host plant resistance for the management of Bemisia tabaci: a multi-crop survey with emphasis on tomato. In: Bemisia: bionomics and management of a global pest. Springer, Dordrecht, pp 357–383

    Chapter  Google Scholar 

  • Nürnberger T (1999) Signal perception in plant pathogen defense. Cell Mol Life Sci 55(2):167–182

    Article  PubMed  Google Scholar 

  • Okada K, Abe H, Arimura GI (2015) Jasmonates induce both defense responses and communication in monocotyledonous and dicotyledonous plants. Plant Cell Physiol 56(1):16–27

    Article  CAS  PubMed  Google Scholar 

  • Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16(3):115–125

    Article  CAS  PubMed  Google Scholar 

  • Orlovskis Z, Reymond P (2020) Pieris brassicae eggs trigger interplant systemic acquired resistance against a foliar pathogen in Arabidopsis. New Phytol 228(5):1652–1661

    Article  CAS  PubMed  Google Scholar 

  • Pangesti N, Pineda A, Pieterse CM, Dicke M, Van Loon JJ (2013) Two-way plant mediated interactions between root-associated microbes and insects: from ecology to mechanisms. Front Plant Sci 4:414

    Article  PubMed  PubMed Central  Google Scholar 

  • Pangesti N, Pineda A, Dicke M, Van Loon JJA (2015) Variation in plant-mediated interactions between rhizobacteria and caterpillars: potential role of soil composition. Plant Biol 17(2):474–483

    Article  CAS  PubMed  Google Scholar 

  • Pangesti N, Reichelt M, van de Mortel JE, Kapsomenou E, Gershenzon J, van Loon JJ, Dicke M, Pineda A (2016) Jasmonic acid and ethylene signaling pathways regulate glucosinolate levels in plants during rhizobacteria-induced systemic resistance against a leaf-chewing herbivore. J Chem Ecol 42(12):1212–1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pappas ML, Broekgaarden C, Broufas GD, Kant MR, Messelink GJ, Steppuhn A, Wäckers F, Van Dam NM (2017) Induced plant defenses in biological control of arthropod pests: a double-edged sword. Pest Manag Sci 73(9):1780–1788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parera CA, Cantliffe DJ (1994) Presowing seed priming. Hortic Rev 16(16):109–141

    Google Scholar 

  • Park SW, Kaimoyo E, Kumar D, Mosher S, Klessig DF (2007) Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 318(5847):113–116

    Article  CAS  PubMed  Google Scholar 

  • Pastor V, Luna E, Mauch-Mani B, Ton J, Flors V (2013) Primed plants do not forget. Environ Exp Bot 94:46–56

    Article  CAS  Google Scholar 

  • Pechan T, Cohen A, Williams WP, Luthe DS (2002) Insect feeding mobilizes a unique plant defense protease that disrupts the peritrophic matrix of caterpillars. Proc Natl Acad Sci 99(20):13319–13323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pieterse CM, Van Wees SC, Hoffland E, Van Pelt JA, Van Loon LC (1996) Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell 8(8):1225–1237

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pieterse CM, Van Wees SC, Van Pelt JA, Knoester M, Laan R, Gerrits H, Weisbeek PJ, Van Loon LC (1998) A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10(9):1571–1580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pieterse CM, Schaller A, Mauch-Mani B, Conrath U (2006) Signaling in plant resistance responses: divergence and cross-talk of defense pathways. In: Multigenic and induced systemic resistance in plants. Springer, Boston, MA, pp 166–196

    Chapter  Google Scholar 

  • Pieterse CM, Leon-Reyes A, Van der Ent S, Van Wees SC (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5(5):308–316

    Article  CAS  PubMed  Google Scholar 

  • Pieterse CM, Zamioudis C, Does DV, Van Wees SC (2014) Signalling networks involved in induced resistance. Induced resistance for plant defense: a sustainable approach to crop protection, 2nd edn. John Wiley & Sons, New York, pp 58–80

    Google Scholar 

  • Pill WG, Collins CM, Gregory N, Evans TA (2011) Application method and rate of Trichoderma species as a biological control against Pythium aphanidermatum (Edson) Fitzp. in the production of microgreen table beets (Beta vulgaris L.). Sci Hortic 129(4):914–918

    Article  Google Scholar 

  • Pineda A, Zheng SJ, van Loon JJ, Pieterse CM, Dicke M (2010) Helping plants to deal with insects: the role of beneficial soil-borne microbes. Trends Plant Sci 15(9):507–514

    Article  CAS  PubMed  Google Scholar 

  • Pineda A, Zheng SJ, Van Loon JJA, Dicke M (2012) Rhizobacteria modify plant–aphid interactions: a case of induced systemic susceptibility. Plant Biol 14:83–90

    Article  CAS  PubMed  Google Scholar 

  • Pino O, Sánchez Y, Rojas MM (2013) Plant secondary metabolites as an alternative in pest management. I: background, research approaches and trends. Revista de Protección Vegetal 28(2):81

    Google Scholar 

  • Quintana-Rodriguez E, Morales-Vargas AT, Molina-Torres J, Ádame-Alvarez RM, Acosta-Gallegos JA, Heil M (2015) Plant volatiles cause direct, induced and associational resistance in common bean to the fungal pathogen Colletotrichum lindemuthianum. J Ecol 103(1):250–260

    Article  CAS  Google Scholar 

  • Rashid M, Chung YR (2017) Induction of systemic resistance against insect herbivores in plants by beneficial soil microbes. Front Plant Sci 8:1816

    Article  PubMed  PubMed Central  Google Scholar 

  • Rasmann S, De Vos M, Casteel CL, Tian D, Halitschke R, Sun JY, Agrawal AA, Felton GW, Jander G (2012) Herbivory in the previous generation primes plants for enhanced insect resistance. Plant Physiol 158(2):854–863

    Article  CAS  PubMed  Google Scholar 

  • Reddy PP (2014) Plant growth promoting rhizobacteria for horticultural crop protection, vol 10. Springer, New Delhi, pp 978–981

    Book  Google Scholar 

  • Reynolds OL, Keeping MG, Meyer JH (2009) Silicon-augmented resistance of plants to herbivorous insects: a review. Ann Appl Biol 155(2):171–186

    Article  CAS  Google Scholar 

  • Rhoades DF (1983) Responses of alder and willow to attack by tent caterpillars and webworms: evidence for pheromonal sensitivity of willows

    Google Scholar 

  • Rodriguez-Saona C, Crafts-Brandner SJ, Cañas LA (2003) Volatile emissions triggered by multiple herbivore damage: beet armyworm and whitefly feeding on cotton plants. J Chem Ecol 29(11):2539–2550

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Saona CR, Musser RO, Vogel H, Hum-Musser SM, Thaler JS (2010) Molecular, biochemical, and organismal analyses of tomato plants simultaneously attacked by herbivores from two feeding guilds. J Chem Ecol 36(10):1043–1057

    Article  CAS  PubMed  Google Scholar 

  • Rudrappa T, Biedrzycki ML, Kunjeti SG, Donofrio NM, Czymmek KJ, Paul W, Bais HP (2010) The rhizobacterial elicitor acetoin induces systemic resistance in Arabidopsis thaliana. Commun Integr Biol 3(2):130–138

    Article  PubMed  PubMed Central  Google Scholar 

  • Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner HY, Hunt MD (1996) Systemic acquired resistance. Plant Cell 8(10):1809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Paré PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134(3):1017–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandroni M, Liljeroth E, Mulugeta T, Alexandersson E (2020) Plant resistance inducers (PRIs): perspectives for future disease management in the field. CAB Rev 15(1):1–10

    Article  CAS  Google Scholar 

  • Sbaihat L, Takeyama K, Koga T, Takemoto D, Kawakita K (2015) Induced resistance in Solanum lycopersicum by algal elicitor extracted from Sargassum fusiforme. Sci World J 2015:870520

    Article  Google Scholar 

  • Schoenherr AP, Rizzo E, Jackson N, Manosalva P, Gomez SK (2019) Mycorrhiza-induced resistance in potato involves priming of defense responses against cabbage looper (Noctuidae: Lepidoptera). Environ Entomol 48(2):370–381

    Article  CAS  PubMed  Google Scholar 

  • Schwachtje J, Baldwin IT (2008) Why does herbivore attack reconfigure primary metabolism? Plant Physiol 146(3):845–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segarra G, Van der Ent S, Trillas I, Pieterse CMJ (2009) MYB72, a node of convergence in induced systemic resistance triggered by a fungal and a bacterial beneficial microbe. Plant Biol 11(1):90–96

    Article  CAS  PubMed  Google Scholar 

  • Selig P, Keough S, Nalam VJ, Nachappa P (2016) Jasmonate-dependent plant defenses mediate soybean thrips and soybean aphid performance on soybean. Arthropod Plant Interact 10(4):273–282

    Article  Google Scholar 

  • Serteyn L, Quaghebeur C, Ongena M, Cabrera N, Barrera A, Molina-Montenegro MA, Francis F, Ramírez CC (2020) Induced systemic resistance by a plant growth-promoting rhizobacterium impacts development and feeding behavior of aphids. Insects 11(4):234

    Article  PubMed Central  Google Scholar 

  • Sharifi R, Ryu CM (2016) Are bacterial volatile compounds poisonous odors to a fungal pathogen Botrytis cinerea, alarm signals to Arabidopsis seedlings for eliciting induced resistance, or both? Front Microbiol 7:196

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma K, Butz AF, Finckh MR (2010) Effects of host and pathogen genotypes on inducibility of resistance in tomato (Solanum lycopersicum) to Phytophthora infestans. Plant Pathol 59(6):1062–1071

    Article  Google Scholar 

  • Shavit R, Ofek-Lalzar M, Burdman S, Morin S (2013) Inoculation of tomato plants with rhizobacteria enhances the performance of the phloem-feeding insect Bemisia tabaci. Front Plant Sci 4:306

    Article  PubMed  PubMed Central  Google Scholar 

  • Shepherd WP, Sullivan BT, Goyer RA, Klepzig KD (2005) Electrophysiological and olfactometer responses of two histerid predators to three pine bark beetle pheromones. J Chem Ecol 31(5):1101–1110

    Article  CAS  PubMed  Google Scholar 

  • Shikano I, Rosa C, Tan CW, Felton GW (2017) Tritrophic interactions: microbe-mediated plant effects on insect herbivores. Annu Rev Phytopathol 55:313–331

    Article  CAS  PubMed  Google Scholar 

  • Sikora RA, Pocasangre L, Zum Felde A, Niere B, Vu TT, Dababat AA (2008) Mutualistic endophytic fungi and in-planta suppressiveness to plant parasitic nematodes. Biol Control 46(1):15–23

    Article  Google Scholar 

  • Singh UB, Malviya D, Singh S, Pradhan JK, Singh BP, Roy M, Imram M, Pathak N, Baisyal BM, Rai JP, Sarma BK (2016) Bio-protective microbial agents from rhizosphere eco-systems trigger plant defense responses provide protection against sheath blight disease in rice (Oryza sativa L.). Microbiol Res 192:300–312

    Article  CAS  PubMed  Google Scholar 

  • Smart LE, Martin JL, Limpalaër M, Bruce TJ, Pickett JA (2013) Responses of herbivore and predatory mites to tomato plants exposed to jasmonic acid seed treatment. J Chem Ecol 39(10):1297–1300

    Article  CAS  PubMed  Google Scholar 

  • Smith JL, De Moraes CM, Mescher MC (2009) Jasmonate-and salicylate-mediated plant defense responses to insect herbivores, pathogens and parasitic plants. Pest Manag Sci 65(5):497–503

    Article  CAS  PubMed  Google Scholar 

  • Sohrabi M, Samsampour D, Bagheri A (2019) Molecular identification of some fungal endophytes of Citrullus colocynthis (L). Schrad. and their role in change of secondary metabolites of Citrullus colocynthis (L). Schrad. under cell suspension culture conditions. Thesis for obtaining a Master’s degree, Hormozgan University, p 87

    Google Scholar 

  • Soler R, Erb M, Kaplan I (2013) Long distance root–shoot signalling in plant–insect community interactions. Trends Plant Sci 18(3):149–156

    Article  CAS  PubMed  Google Scholar 

  • Song GC, Choi HK, Kim YS, Choi JS, Ryu CM (2017) Seed defense biopriming with bacterial cyclodipeptides triggers immunity in cucumber and pepper. Sci Rep 7(1):1–15

    Article  CAS  Google Scholar 

  • Steenbergen M, Abd-el-Haliem A, Bleeker P, Dicke M, Escobar-Bravo R, Cheng G, Haring MA, Kant MR, Kappers I, Klinkhamer PG, Leiss KA (2018) Thrips advisor: exploiting thrips-induced defenses to combat pests on crops. J Exp Bot 69(8):1837–1848

    Article  PubMed  CAS  Google Scholar 

  • Sun YD, Li XZ, Yang HL, Sun L (2011) Effect of priming techniques on seed germination characteristics of C. maxima Duch. In: Key engineering materials, vol 474. Trans Tech Publications Ltd., Zurich, pp 36–39

    Google Scholar 

  • Tamaoki D, Seo S, Yamada S, Kano A, Miyamoto A, Shishido H, Miyoshi S, Taniguchi S, Akimitsu K, Gomi K (2013) Jasmonic acid and salicylic acid activate a common defense system in rice. Plant Signal Behav 8(6):e24260

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Taylor AG, Harman GE (1990) Concepts and technologies of selected seed treatments. Annu Rev Phytopathol 28(1):321–339

    Article  Google Scholar 

  • Thakur M, Sohal BS (2013) Role of elicitors in inducing resistance in plants against pathogen infection: a review. Int Schol Res Not 2013:762412

    Google Scholar 

  • Thaler JS, Humphrey PT, Whiteman NK (2012) Evolution of jasmonate and salicylate signal crosstalk. Trends Plant Sci 17(5):260–270

    Article  CAS  PubMed  Google Scholar 

  • Thielert W (2007) A unique product: the story of the imidacloprid stress shield. Pflanzenschutz Nachrichten-Bayer-English Ed 59(1):73

    Google Scholar 

  • Thulke O, Conrath U (1998) Salicylic acid has a dual role in the activation of defense-related genes in parsley. Plant J 14(1):35–42

    Article  CAS  PubMed  Google Scholar 

  • Tissier A (2012) Glandular trichomes: what comes after expressed sequence tags? Plant J 70(1):51–68

    Article  CAS  PubMed  Google Scholar 

  • Tomberlin JK, Crippen TL, Wu G, Griffin AS, Wood TK, Kilner RM (2017) Indole: an evolutionarily conserved influencer of behavior across kingdoms. Bioessays 39(2):1600203

    Article  Google Scholar 

  • Ton J, Mauch-Mani B (2004) β-Amino-butyric acid-induced resistance against necrotrophic pathogens is based on ABA-dependent priming for callose. Plant J 38(1):119–130

    Article  CAS  PubMed  Google Scholar 

  • Ton J, Van Pelt JA, Van Loon LC, Pieterse CM (2002) Differential effectiveness of salicylate-dependent and jasmonate/ethylene-dependent induced resistance in Arabidopsis. Mol Plant-Microbe Interact 15(1):27–34

    Article  CAS  PubMed  Google Scholar 

  • Ton J, Jakab G, Toquin V, Flors V, Iavicoli A, Maeder MN, Métraux JP, Mauch-Mani B (2005) Dissecting the β-aminobutyric acid-induced priming phenomenon in Arabidopsis. Plant Cell 17(3):987–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ton J, Ent S, van Hulten MHA, Pozo M, Oosten VV, Van Loon LC, Mauch-Mani B, Turlings TC, Pieterse CM (2009) Priming as a mechanism behind induced resistance against pathogens, insects and abiotic stress. IOBC/WPRS Bull 44:3–13

    Google Scholar 

  • Truman W, Bennett MH, Kubigsteltig I, Turnbull C, Grant M (2007) Arabidopsis systemic immunity uses conserved defense signaling pathways and is mediated by jasmonates. Proc Natl Acad Sci 104(3):1075–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turlings TC, Bernasconi M, Bertossa R, Bigler F, Caloz G, Dorn S (1998) The induction of volatile emissions in maize by three herbivore species with different feeding habits: possible consequences for their natural enemies. Biol Control 11(2):122–129

    Article  Google Scholar 

  • Valenzuela-Soto JH, Estrada-Hernández MG, Ibarra-Laclette E, Délano-Frier JP (2010) Inoculation of tomato plants (Solanum lycopersicum) with growth-promoting Bacillus subtilis retards whitefly Bemisia tabaci development. Planta 231(2):397

    Article  CAS  PubMed  Google Scholar 

  • van Dam NM, Baldwin IT (2001) Competition mediates costs of jasmonate-induced defenses, nitrogen acquisition and transgenerational plasticity in Nicotiana attenuata. Funct Ecol 15(3):406–415

    Article  Google Scholar 

  • van Hulten M, Pelser M, Van Loon LC, Pieterse CM, Ton J (2006) Costs and benefits of priming for defense in Arabidopsis. Proc Natl Acad Sci 103(14):5602–5607

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Loon LC (2000) Systemic induced resistance. In: Slusarenko AJ, Fraser RSS, van Loon LC (eds) Mechanisms of resistance to plant diseases. Kluwer, Dordrecht, pp 521–574

    Chapter  Google Scholar 

  • van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36(1):453–483

    Article  PubMed  Google Scholar 

  • van Loon LC, Rep M, Pieterse CM (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162

    Article  PubMed  CAS  Google Scholar 

  • van Oosten VR, Bodenhausen N, Reymond P, Van Pelt JA, Van Loon LC, Dicke M, Pieterse CM (2008) Differential effectiveness of microbially induced resistance against herbivorous insects in Arabidopsis. Mol Plant-Microbe Interact 21(7):919–930

    Article  CAS  PubMed  Google Scholar 

  • van Peer R, Niemann GJ, Schippers B (1991) Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS 417 r. Phytopathology 81(7):728–734

    Article  Google Scholar 

  • van Tol RW, Van Der Sommen AT, Boff MI, Van Bezooijen J, Sabelis MW, Smits PH (2001) Plants protect their roots by alerting the enemies of grubs. Ecol Lett 4(4):292–294

    Article  Google Scholar 

  • van Wees SC, Luijendijk M, Smoorenburg I, Van Loon LC, Pieterse CM (1999) Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis is not associated with a direct effect on expression of known defense-related genes but stimulates the expression of the jasmonate-inducible gene Atvsp upon challenge. Plant Mol Biol 41(4):537–549

    Article  PubMed  Google Scholar 

  • Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Barbetti MJ, Li H, Woo SL, Lorito M (2008) A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiol Mol Plant Pathol 72(1–3):80–86

    Article  CAS  Google Scholar 

  • Vos IA, Moritz L, Pieterse CM, Van Wees S (2015) Impact of hormonal crosstalk on plant resistance and fitness under multi-attacker conditions. Front Plant Sci 6:639

    Article  PubMed  PubMed Central  Google Scholar 

  • Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Hückelhoven R, Neumann C, Von Wettstein D, Franken P (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci 102(38):13386–13391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walters DR, Fountaine JM (2009) Practical application of induced resistance to plant diseases: an appraisal of effectiveness under field conditions. J Agric Sci 147(5):523–535

    Article  CAS  Google Scholar 

  • Walters D, Heil M (2007) Costs and trade-offs associated with induced resistance. Physiol Mol Plant Pathol 71(1–3):3–17

    Article  CAS  Google Scholar 

  • Walters DR, Havis ND, Paterson L, Taylor J, Walsh DJ (2011) Cultivar effects on the expression of induced resistance in spring barley. Plant Dis 95(5):595–600

    Article  PubMed  Google Scholar 

  • Walters DR, Ratsep J, Havis ND (2013) Controlling crop diseases using induced resistance: challenges for the future. J Exp Bot 64(5):1263–1280

    Article  CAS  PubMed  Google Scholar 

  • Waqas M, Korres NE, Khan MD, Nizami AS, Deeba F, Ali I, Hussain H (2019) Advances in the concept and methods of seed priming. In: Priming and pretreatment of seeds and seedlings. Springer, Singapore, pp 11–41

    Chapter  Google Scholar 

  • Wasternack C (2015) How jasmonates earned their laurels: past and present. J Plant Growth Regul 34(4):761–794

    Article  CAS  Google Scholar 

  • Welte CU, de Graaf RM, van den Bosch TJ, Op den Camp HJ, van Dam NM, Jetten MS (2016) Plasmids from the gut microbiome of cabbage root fly larvae encode SaxA that catalyses the conversion of the plant toxin 2-phenylethyl isothiocyanate. Environ Microbiol 18(5):1379–1390

    Article  CAS  PubMed  Google Scholar 

  • Westman SM, Kloth KJ, Hanson J, Ohlsson AB, Albrectsen BR (2019) Defense priming in Arabidopsis—a meta-analysis. Sci Rep 9(1):1–13

    Article  CAS  Google Scholar 

  • Worrall D, Holroyd GH, Moore JP, Glowacz M, Croft P, Taylor JE, Paul ND, Roberts MR (2012) Treating seeds with activators of plant defense generates long-lasting priming of resistance to pests and pathogens. New Phytol 193(3):770–778

    Article  CAS  PubMed  Google Scholar 

  • Xia Y, Suzuki H, Borevitz J, Blount J, Guo Z, Patel K, Dixon RA, Lamb C (2004) An extracellular aspartic protease functions in Arabidopsis disease resistance signaling. EMBO J 23(4):980–988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao L, Carrillo J, Siemann E, Ding J (2019) Herbivore-specific induction of indirect and direct defensive responses in leaves and roots. AoB Plants 11(1):plz003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yactayo-Chang JP, Tang HV, Mendoza J, Christensen SA, Block AK (2020) Plant defense chemicals against insect pests. Agronomy 10(8):1156

    Article  CAS  Google Scholar 

  • Yang C, Hu LY, Ali B, Islam F, Bai QJ, Yun XP, Yoneyama K, Zhou WJ (2016) Seed treatment with salicylic acid invokes defense mechanism of Helianthus annuus against Orobanche cumana. Ann Appl Biol 169(3):408–422

    Article  CAS  Google Scholar 

  • Yao L, Zhong Y, Wang B, Yan J, Wu T (2020) BABA application improves soybean resistance to aphid through activation of phenylpropanoid metabolism and callose deposition. Pest Manag Sci 76(1):384–394

    Article  CAS  PubMed  Google Scholar 

  • Ye M, Song Y, Long J, Wang R, Baerson SR, Pan Z, Zhu-Salzman K, Xie J, Cai K, Luo S, Zeng R (2013) Priming of jasmonate-mediated antiherbivore defense responses in rice by silicon. Proc Natl Acad Sci 110(38):E3631–E3639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yip EC, Tooker JF, Mescher MC, De Moraes CM (2019) Costs of plant defense priming: exposure to volatile cues from a specialist herbivore increases short-term growth but reduces rhizome production in tall goldenrod (Solidago altissima). BMC Plant Biol 19(1):1–12

    Article  CAS  Google Scholar 

  • Zaynab M, Fatima M, Abbas S, Sharif Y, Umair M, Zafar MH, Bahadar K (2018) Role of secondary metabolites in plant defense against pathogens. Microb Pathog 124:198–202

    Article  CAS  PubMed  Google Scholar 

  • Zebelo S, Song Y, Kloepper JW, Fadamiro H (2016) Rhizobacteria activates (+)-δ-cadinene synthase genes and induces systemic resistance in cotton against beet armyworm (Spodoptera exigua). Plant Cell Environ 39(4):935–943

    Article  CAS  PubMed  Google Scholar 

  • Zeidler D, Zähringer U, Gerber I, Dubery I, Hartung T, Bors W, Hutzler P, Durner J (2004) Innate immunity in Arabidopsis thaliana: lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genes. Proc Natl Acad Sci 101(44):15811–15816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeneli G, Krokene P, Christiansen E, Krekling T, Gershenzon J (2006) Methyl jasmonate treatment of mature Norway spruce (Picea abies) trees increases the accumulation of terpenoid resin components and protects against infection by Ceratocystis polonica, a bark beetle-associated fungus. Tree Physiol 26(8):977–988

    Article  CAS  PubMed  Google Scholar 

  • Zimmerli L, Jakab G, Métraux JP, Mauch-Mani B (2000) Potentiation of pathogen-specific defense mechanisms in Arabidopsis by β-aminobutyric acid. Proc Natl Acad Sci 97(23):12920–12925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmerli L, Métraux JP, Mauch-Mani B (2001) β-Aminobutyric acid-induced protection of Arabidopsis against the necrotrophic fungus Botrytis cinerea. Plant Physiol 126(2):517–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmerli L, Hou BH, Tsai CH, Jakab G, Mauch-Mani B, Somerville S (2008) The xenobiotic β-aminobutyric acid enhances Arabidopsis thermotolerance. Plant J 53(1):144–156

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Mousa Abdollahipour, PhD student of Entomology at Tarbiat Modares University, for his great assistance in preparing the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaghoub Fathipour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bagheri, A., Fathipour, Y. (2021). Induced Resistance and Defense Primings. In: Omkar (eds) Molecular Approaches for Sustainable Insect Pest Management. Springer, Singapore. https://doi.org/10.1007/978-981-16-3591-5_3

Download citation

Publish with us

Policies and ethics