Skip to main content

Leveraging Seaweeds as a Potential Biostimulant for Agriculture Sustainability

  • Chapter
  • First Online:

Abstract

Seaweeds or macroalgae are primary producers and ample space inhabitants in marine ecosystems with great ecological and economic importance. At present, excessive application of chemical fertilizers, pesticides, and herbicides in agricultural practices and is considered as the main cause for the reduction of beneficial soil microbial diversity, diminution in soil quality and fertility, and contamination of groundwater resources. Therefore, a substitute for chemical fertilizer is urgently needed. As a natural resource, seaweeds are a viable alternative to chemical fertilizers not only harmless to the environment but also rich in various micro and macro elements, vitamins, fatty acids, and growth regulators. Extracts of seaweeds are usually used in agriculture practices largely for their plant growth-promoting effects and their ameliorating effect on crop tolerance to abiotic and biotic stresses. This chapter aims to explore the potential of seaweed extracts in agriculture sustainability as metabolic enhancers, tolerance to abiotic and biotic stresses, and nutritional and bioactive potential of seaweed substances.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abkhoo J, Sabbagh SK (2016) Control of Phytophthora melonis damping-off, induction of defense responses, and gene expression of cucumber treated with commercial extract from Ascophyllum nodosum. J Appl Phycol 28:1333–1342

    Article  CAS  Google Scholar 

  • Ahmed YM, Shalaby EA (2012) Effect of different seaweed extracts and composton vegetative growth, yield and fruit quality of cucumber. J Hortic Sci OrnamPlants 4:235–240

    Google Scholar 

  • Allen VG, Pond KR, Saker KE, Fontenot JP, Bagley CP, Ivy RL, Evans RR, Schmidt RE, Fike JH, Zhang X, Ayad JY (2001) Tasco: influence of a brown seaweed on antioxidants in forages and livestock—A review. J Anim Sci 79:E21

    Article  Google Scholar 

  • Anderson JT, Willis JH, Mitchell-Olds T (2011) Evolutionary genetics of plant adaptation. Trends Genet 27:258–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andjelković M, Van Camp J, De Meulenaer B, Depaemelaere G, Socaciu C, Verloo M, Verhe R (2006) Iron-chelation properties of phenolic acids bearing catechol and galloyl groups. Food Chem 98:23–31

    Article  Google Scholar 

  • Balboa EM, Conde E, Moure A, Falqué E, Domínguez H (2013) In vitro antioxidant properties of crude extracts and compounds from brown algae. Food Chem 138:1764–1785

    Article  CAS  PubMed  Google Scholar 

  • Basavaraja PK, Yogendra ND, Zodape ST, Prakash R, Ghosh A (2018) Effect of seaweed sap as foliar spray on growth and yield of hybrid maize. J Plant Nutr 41:1851–1861

    Article  Google Scholar 

  • Battacharyya D, Babgohari MZ, Rathor P, Prithiviraj B (2015) Seaweed extracts as biostimulants in horticulture. Sci Hortic 196:39–48

    Article  CAS  Google Scholar 

  • Billard V, Etienne P, Jannin L, Garnica M, Cruz F, Garcia-Mina JM, Yvin JC, Ourry A (2014) Two biostimulants derived from algae or humic acid induce similar responses in the mineral content and gene expression of winter oilseed rape (Brassica napus L.). J Plant Growth Regul 33:305–316

    Article  CAS  Google Scholar 

  • Blunden G, Gordon SM (1986) Betaines and their sulphono analogues in marine algae. In: Round FE, Chapman DJ (eds) Progress in phycological research, vol 4. Biopress Ltd, Bristol, pp 39–80

    Google Scholar 

  • Bonomelli C, Celis V, Lombardi G, Mártiz J (2018) Salt stress effects on avocado (Persea americana mill). Plants with and without seaweed extract (Ascophyllum nodosum) application. Agronomy 8:64

    Article  Google Scholar 

  • Calvo P, Nelson L, Kloepper JW (2014) Agricultural uses of plant biostimulants. Plant Soil 383:3–41

    Article  CAS  Google Scholar 

  • Carrasco-Gil S, Hernandez-Apaolaza L, Lucena JJ (2018) Effect of several commercial seaweed extracts in the mitigation of iron chlorosis of tomato plants (Solanum lycopersicum L.). Plant Growth Regul 86:401–411

    Article  CAS  Google Scholar 

  • Chouliaras V, Tasioula M, Chatzissavvidis C, Therios I, Tsabolatidou E (2009) The effects of a seaweed extract in addition to nitrogen and boron fertilization on productivity, fruit maturation, leaf nutritional status and oil quality of the olive (Olea europaea L). Cultivar Koroneiki. J Sci Food Agric 89:984–988

    Article  CAS  Google Scholar 

  • Coello P, Hey SJ, Halford NG (2011) The sucrose non-fermenting-1-related (SnRK) family of protein kinases: potential for manipulation to improve stress tolerance and increase yield. J Exp Bot 62:883–893

    Article  CAS  PubMed  Google Scholar 

  • Colla G, Cardarelli M, Bonini P, Rouphael Y (2017) Foliar applications of protein hydrolysate, plant and seaweed extracts increase yield but dierentially modulate fruit quality of greenhouse tomato. HortScience 52:1214–1220

    Article  CAS  Google Scholar 

  • Cook J, Zhang J, Norrie J, Blal B, Cheng Z (2018) Seaweed extract (Stella Maris®) activates innate immune responses in Arabidopsis thaliana and protects host against bacterial pathogens. Mar Drugs 16:E221

    Article  PubMed  Google Scholar 

  • Craigie JS (2011) Seaweed extract stimuli in plant science and agriculture. J Appl Phycol 23:371–393

    Article  CAS  Google Scholar 

  • Damalas C, Koutroubas S (2016) Farmers’ exposure to pesticides: toxicity types and ways of prevention. Toxics 4:1

    Article  PubMed Central  Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53

    Article  Google Scholar 

  • De Saeger J, Van Praet S, Vereecke D, Park J, Jacques S, Han T, Depuydt S (2019) Toward the molecular understanding of the action mechanism of Ascophyllum nodosum extracts on plants. J Appl Phycol:1–25

    Google Scholar 

  • Debnath M, Pandey M, Bisen PS (2011) An omics approach to understand the plant abiotic stress. Omi J Integr Biol 15:739–762

    Article  CAS  Google Scholar 

  • Di Stasio E, Rouphael Y, Colla G, Raimondi G, Giordano M, Pannico A, El-Nakhel C, De Pascale S (2017) The influence of Ecklonia maxima seaweed extract on growth, photosynthetic activity and mineral composition of Brassica rapa L. subsp sylvestris under nutrient stress conditions. Eur J Hortic Sci 82:286–293

    Article  Google Scholar 

  • Di Stasio E, Van Oosten MJ, Silletti S, Raimondi G, dell’Aversana E, Carillo P, Maggio A (2018) Ascophyllum nodosum-based algal extracts act as enhancers of growth, fruit quality, and adaptation to stress in salinized tomato plants. J Appl Phycol 30:2675–2686

    Article  Google Scholar 

  • do Rosário Rosa V, Dos Santos ALF, da Silva AA, Sab MPV, Germino GH, Cardoso FB, de Almeida Silva M (2021) Increased soybean tolerance to water deficiency through biostimulant based on fulvic acids and Ascophyllum nodosum (L.) seaweed extract. Plant Physiol Biochem 158:228–243

    Article  PubMed  Google Scholar 

  • dos Reis SP, Lima AM, de Souza CRB (2012) Recent molecular advances on downstream plant responses to abiotic stress. Int J Mol Sci 13:8628–8647

    Article  PubMed  PubMed Central  Google Scholar 

  • Elansary HO, Yessoufou K, Abdel-Hamid AME, El-Esawi MA, Ali HM, Elshikh MS (2016) Seaweed extracts enhance Salam turfgrass performance during prolonged irrigation intervals and saline shock. Front Plant Sci 8:830

    Article  Google Scholar 

  • Elansary HO, Yessoufou K, Abdel-Hamid AME, El-Esawi MA, Ali HM, Elshikh MS (2016) Seaweed extracts enhance Salam turfgrass performance during prolonged irrigation intervals and saline shock. Front Plant Sci 8. https://doi.org/10.3389/fpls.2017.00830

  • FAO (2006) Yearbook of fishery statistics, vol 98(1–2). Food and Agricultural Organisation of the United Nations, Rome

    Google Scholar 

  • Frioni T, VanderWeide J, Palliotti A, Tombesi S, Poni S, Sabbatini P (2021) Foliar vs. soil application of Ascophyllum nodosum extracts to improve grapevine water stress tolerance. Sci Hortic 277:109807

    Article  CAS  Google Scholar 

  • Gayathri M, Kumar PS, Prabha AML, Muralitharan G (2015) In vitro regeneration of Arachis hypogaea L. and Moringa oleifera lam. Using extracellular phytohormones from Aphanothece sp. MBDU 515. Algal Res 7:100–105

    Article  Google Scholar 

  • Goñi O, Fort A, Quille P, McKeown PC, Spillane C, O’Connell S (2016) Comparative transcriptome analysis of two Ascophyllum nodosum extract biostimulants: same seaweed but different. J Agric Food Chem 64:2980–2989

    Article  PubMed  Google Scholar 

  • Goñi O, Quille P, O’Connell S (2018) Ascophyllum nodosum extract biostimulants and their role in enhancing tolerance to drought stress in tomato plants. Plant Physiol Biochem 126:63–73

    Article  PubMed  Google Scholar 

  • Gruszka D, Janeczko A, Dziurka M, Pociecha E, Fodor J (2018) Non-enzymatic antioxidant accumulations in BR-deficient and BR-insensitive barley mutants under control and drought conditions. Physiol Plant 163:155–169

    Article  CAS  PubMed  Google Scholar 

  • Guinan KJ, Sujeeth N, Copeland RB, Jones PW, O’brien NM, Sharma HSS, Prouteau PFJ, O’sullivan JT (2012) Discrete roles for extracts of Ascophyllum nodosum in enhancing plant growth and tolerance to abiotic and biotic stresses. In: I World Congress on the Use of Biostimulants in Agriculture 1009, pp 127–135

    Google Scholar 

  • Halpern M, Bar-Tal A, Ofek M, Minz D, Muller T, Yermiyahu U (2015) The use of biostimulants for enhancing nutrient uptake. Adv Agron 130:141–174

    Article  Google Scholar 

  • Hernández-Carlos B, Gamboa-Angulo MM (2011) Metabolites from freshwater aquatic microalgae and fungi as potential natural pesticides. Phytochem Rev 10:261–286

    Article  Google Scholar 

  • Hernández-Herrera RM, Santacruz-Ruvalcaba F, Ruiz-López MA, Norrie J, Hernández-Carmona G (2014) Effect of liquid seaweed extracts on growth of tomato seedlings (Solanum lycopersicum L.). J Appl Phycol 26(1):619–628. https://doi.org/10.1007/s10811-013-0078-4

  • Hong DD, Hien HM, Son PN (2007) Seaweeds from Vietnam used for functional food, medicine and biofertilizer. J Appl Phycol 19:817–826

    Article  Google Scholar 

  • Jäger K, Bartók T, Ördög V, Barnabás B (2010) Improvement of maize (Zea mays L.) anther culture responses by algae-derived natural substances. S Afr J Bot 76:511–516

    Article  Google Scholar 

  • Jannin L, Arkoun M, Etienne P, Laîné P, Goux D, Garnica M, Fuentes M, San Francisco S, Baigorri R, Cruz F, Houdusse F (2013) Brassica napus growth is promoted by Ascophyllum nodosum (L). Le Jol. Seaweed extract: microarray analysis and physiological characterization of N, C, and S metabolisms. J Plant Growth Regul 32:31–52

    Article  CAS  Google Scholar 

  • Jayaraj J, Wan A, Rahman M, Punja ZK (2008) Seaweed extract reduces foliar fungal diseases on carrot. Crop Prot 27:1360–1366

    Article  Google Scholar 

  • Jayaraman J, Norrie J, Punja ZK (2011) Commercial extract from the brown seaweed Ascophyllum nodosum reduces fungal diseases in greenhouse cucumber. J Appl Phycol 23:353–361

    Article  Google Scholar 

  • Jiménez-Escrig A, Gómez-Ordóñez E, Rupérez P (2012) Brown and red seaweeds as potential sources of antioxidant nutraceuticals. J Appl Phycol 24:1123–1132

    Article  Google Scholar 

  • Jithesh MN, Shukla PS, Kant P, Joshi J, Critchley AT, Prithiviraj B (2018) Physiological and transcriptomics analyses reveal that Ascophyllum nodosum extracts induce salinity tolerance in Arabidopsis by regulating the expression of stress responsive genes. Plant Growth Regul 38:463–478

    Article  Google Scholar 

  • Keyrouz R, Abasq ML, Le Bourvellec C, Blanc N, Audibert L, ArGall E, Hauchard D (2011) Total phenolic contents, radical scavenging and cyclic voltammetry of seaweeds from Brittany. Food Chem 126:831–836

    Article  CAS  Google Scholar 

  • Khan W, Rayirath UP, Subramanian S, Jithesh MN, Rayorath P, Hodges DM, Critchley AT, Craigie JS, Norrie J, Prithiviraj B (2009) Seaweed extracts as biostimulants of plant growth and development. Plant Growth Regul 28:386–399

    Article  CAS  Google Scholar 

  • Kocira A, Świeca M, Kocira S, Złotek U, Jakubczyk A (2018) Enhancement of yield, nutritional and nutraceutical properties of two common bean cultivars following the application of seaweed extract (Ecklonia maxima). Saudi J Biol Sci 25:563–571

    Article  CAS  PubMed  Google Scholar 

  • Kramer SB, Reganold JP, Glover JD, Bohannan BJM, Mooney HA (2006) Reduced nitrate leaching and enhanced denitrifier activity and efficiency in organically fertilized soils. Proc Natl Acad Sci 103(12):4522–4527. https://doi.org/10.1073/pnas.0600359103

  • Lafarga T, Acién-Fernández FG, Garcia-Vaquero M (2020) Bioactive peptides and carbohydrates from seaweed for food applications: natural occurrence, isolation, purification, and identification. Algal Res 48:101909

    Article  Google Scholar 

  • Li R, Tao R, Ling N, Chu G (2017) Chemical, organic and bio-fertilizer management practices effect on soil physicochemical property and antagonistic bacteria abundance of a cotton field: implications for soil biological quality. Soil Tillage Res 167:30–38

    Article  Google Scholar 

  • Liu H, Chen X, Song L, Li K, Zhang X, Liu S, Qin Y, Li P (2019) Polysaccharides from Grateloupia filicina enhance tolerance of rice seeds (Oryza sativa L.) under salt stress. Int J Biol Macromol 124:1197–1204

    Article  CAS  PubMed  Google Scholar 

  • Manna D, Sarkar A, Maity TK (2012) Impact of biozyme on growth, yield andquality of chilli (Capsicum annuum L.). J Crop Weed 8:40–43

    Google Scholar 

  • Matesanz S, Gianoli E, Valladares F (2010) Global change and the evolution of phenotypic plasticity in plants. Ann N Y Acad Sci 1206:35–55

    Article  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Moroney JV, Ynalvez RA (2009) Algal photosynthesis. In: eLS, September 2009. John Wiley & Sons Ltd, Chichester. http://www.els.net

    Google Scholar 

  • Nair P, Kandasamy S, Zhang J, Ji X, Kirby C, Benkel B, Hodges MD, Critchley AT, Hiltz D, Prithiviraj B (2012) Transcriptional and metabolomic analysis of Ascophyllum nodosum mediated freezing tolerance in Arabidopsis thaliana. BMC Genomics 13:1–23

    Article  Google Scholar 

  • Norrie J, Keathley JP (2006) Benefits of Ascophyllum nodosum marine-plant extract applications to ‘Thompson seedless’ grape production. (proceedings of the Xth international symposium on plant bioregulators in fruit production, 2005). Acta Hortic 727:243–247

    Article  CAS  Google Scholar 

  • Panjehkeh N, Abkhoo J (2016) Influence of marine brown alga extract (Dalgin) on damping-off tolerance of tomato. JMES 7:2369–2374

    Google Scholar 

  • Prasanna R, Kanchan A, Kaur S, Ramakrishnan B, Ranjan K, Singh MC, Hasan M, Saxena AK, Shivay YS (2016) Chrysanthemum growth gains from beneficial microbial interactions and fertility improvements in soil under protected cultivation. Hortic Plant J 2:229–239

    Article  Google Scholar 

  • Qin F, Shinozaki K, Yamaguchi-Shinozaki K (2011) Achievements and challenges in understanding plant abiotic stress responses and tolerance. Plant Cell Physiol 52:1569–1582

    Article  CAS  PubMed  Google Scholar 

  • Rathore SS, Chaudhary DR, Boricha GN, Ghosh A, Bhatt BP, Zodape ST, Patolia JS (2009) Effect of seaweed extract on the growth, yield and nutrient uptake of soybean (Glycine max) under rainfed conditions. S Afr J Bot 75:351–355

    Article  CAS  Google Scholar 

  • Rayirath P, Benkel B, Hodges DM, Allan-Wojtas P, MacKinnon S, Critchley AT, Prithiviraj B (2009) Lipophilic components of the brown seaweed, Ascophyllum nodosum, enhance freezing tolerance in Arabidopsis thaliana. Planta 230:135–147

    Article  CAS  PubMed  Google Scholar 

  • Rayorath P, Jithesh MN, Farid A, Khan W, Palanisamy R, Hankins SD, Critchley AT, Prithiviraj B (2008) Rapid bioassays to evaluate the plant growth promoting activity of Ascophyllum nodosum (L.) Le Jol. Using a model plant, Arabidopsis thaliana (L.) Heynh. J Appl Phycol 20:423–429

    Article  CAS  Google Scholar 

  • Reed RH, Davison IR, Chudek JA, Foster R (1985) The osmotic role of mannitol in the Phaeophyta: an appraisal. Phycologia 24:35–47

    Article  Google Scholar 

  • Renuka N, Guldhe A, Prasanna R, Singh P, Bux F (2018) Microalgae as multi-functional options in modern agriculture: current trends, prospects and challenges. Biotechnol Adv 36:1255–1273

    Article  CAS  PubMed  Google Scholar 

  • Rocha DHA, Seca AML, Pinto DCGA (2018) Seaweed secondary metabolites in vitro and in vivo anticancer activity. Mar Drugs 16:410

    Article  CAS  PubMed Central  Google Scholar 

  • Sangha JS, Ravichandran S, Prithiviraj K, Critchley AT, Prithiviraj B (2010) Sulfated macroalgal polysaccharides l-carrageenan and i-carrageenan differentially alter Arabidopsis thaliana resistance to Sclerotinia sclerotiorum. Physiol Mol Plant Pathol 75:38–45

    Article  CAS  Google Scholar 

  • Santaniello A, Scartazza A, Gresta F, Loreti E, Biasone A, Di Tommaso D, Piaggesi A, Perata P (2017) Ascophyllum nodosum seaweed extract alleviates drought stress in Arabidopsis by affecting photosynthetic performance and related gene expression. Front Plant Sci 8:1362

    Google Scholar 

  • Senn LT (1987) Seaweed and plant growth. Clemson Univ., Clemson, SC. Seaweed and plant growth. Clemson Univ, Clemson, SC

    Google Scholar 

  • Sharma HS, Fleming C, Selby C, Rao JR, Martin T (2014) Plant biostimulants: a review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. J Appl Phycol 26:465–490

    Article  CAS  Google Scholar 

  • Sharma L, Banerjee M, Malik GC, Gopalakrishnan VAK, Zodape ST, Ghosh A (2017) Sustainable agro-technology for enhancement of rice production in the red and lateritic soils using seaweed based biostimulants. J Clean Prod 149:968–975

    Article  CAS  Google Scholar 

  • Shibata T, Yamaguchi K, Nagayama K, Kawaguchi S, Nakamura T (2002) Inhibitory activity of brown algal phlorotannins against glycosidases from the viscera of the turban shell Turbo cornutus. Eur J Phycol 37:493–500

    Article  Google Scholar 

  • Shukla PS, Borza T, Critchley AT, Hiltz D, Norrie J, Prithiviraj B (2018a) Ascophyllum nodosum extract mitigates salinity stress in Arabidopsis thaliana by modulating the expression of miRNA involved in stress tolerance and nutrient acquisition. PLoS One 13:e0206221

    Article  PubMed  PubMed Central  Google Scholar 

  • Shukla PS, Shotton K, Norman E, Neily W, Critchley AT, Prithiviraj B (2018b) Seaweed extract improve drought tolerance of soybean by regulating stress-response genes. AoB Plants 10:plx051

    Article  PubMed  Google Scholar 

  • Silva LD, Bahcevandziev K, Pereira L (2019) Production of bio-fertilizer from Ascophyllum nodosum and Sargassum muticum (Phaeophyceae). J Oceanol Limnol 37:918–927

    Article  CAS  Google Scholar 

  • Singh DP, Prabha R, Yandigeri MS, Arora DK (2011a) Cyanobacteria-mediated phenylpropanoids and phytohormones in rice (Oryza sativa) enhance plant growth and stress tolerance. Anton Leeuw 100:557–568

    Article  CAS  Google Scholar 

  • Singh I, Anand KV, Solomon S, Shukla SK, Rai R, Zodape ST, Ghosh A (2018) Can we not mitigate climate change using seaweed based biostimulant: A case study with sugarcane cultivation in India. J Clean Prod 204:992–1003

    Article  Google Scholar 

  • Singh JS, Pandey VC, Singh DP (2011b) Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ 140:339–353

    Article  Google Scholar 

  • Sivanandhan G, Arunachalam C, Selvaraj N, Sulaiman AA, Lim YP, Ganapathi A (2015) Expression of important pathway genes involved in withanolides biosynthesis in hairy root culture of Withania somnifera upon treatment with Gracilaria edulis and Sargassum wightii. Plant Physiol Biochem 91:61–64

    Article  CAS  PubMed  Google Scholar 

  • Spinelli F, Fiori G, Noferini M, Sprocatti M, andCosta, G. (2010) A novel type of seaweed extract as a natural alternative to the use of iron chelates in strawberry production. Sci Hortic 125:263–269

    Article  CAS  Google Scholar 

  • Stamatiadis S, Evangelou L, Yvin JC, Tsadilas C, Mina JMG, Cruz F (2015) Responses of winter wheat to Ascophyllum nodosum (L.) Le Jol. Extract application under the effect of N fertilization and water supply. J Appl Phycol 27:589–600

    Article  CAS  Google Scholar 

  • Stirk WA, Tarkowská D, Turečová V, Strnad M, van Staden J (2014) Abscisic acid, gibberellins and brassinosteroids in Kelpak®, a commercial seaweed extract made from Ecklonia maxima. J Appl Phycol 26:561–567

    Article  CAS  Google Scholar 

  • Stirk WA, Van Staden J (1997) Isolation and identification of cytokinins in a new commercial seaweed product made from Fucus serratus L. J Appl Phycol 9:327–330

    Article  CAS  Google Scholar 

  • Subramanian S, Sangha JS, Gray BA, Singh RP, Hiltz D, Critchley AT, Prithiviraj B (2011) Extracts of the marine brown macroalga, Ascophyllum nodosum, induce jasmonic acid dependent systemic resistance in Arabidopsis thaliana against pseudomonas syringae pv. Tomato DC3000 and Sclerotinia sclerotiorum. Eur J Plant Pathol 131:237–248

    Article  Google Scholar 

  • Thilagar G, Bagyaraja DJ, Rao MS (2016) Selected microbial consortia developed for chilly reduces application of chemical fertilizers by 50% under field conditions. Sci Hortic 198:27–35

    Article  Google Scholar 

  • Thirumaran G, Arumugam M, Arumugam R, Anantharaman P (2009) Effect of seaweed liquid fertilizer on growth and pigment concentration of Cyamopsis tetrogonolaba (L) Taub. Am Eurasian J Agric Environ Sci 2:50–56

    Google Scholar 

  • Trifan A, Vasincu A, Luca SV, Neophytou C, Wolfram E, Opitz SE, Sava D, Bucur L, Cioroiu BI, Miron A, Constantinou AI (2019) Unravelling the potential of seaweeds from the Black Sea coast of Romania as bioactive compounds sources. Part I: Cystoseira barbata (Stackhouse) C. Agardh. Food Chem Toxicol 134:110820

    Article  PubMed  Google Scholar 

  • Turan M, Köse C (2004) Seaweed extracts improve copper uptake of grapevine. Acta Agric Scand B Soil Plant Sci 54:213–220

    CAS  Google Scholar 

  • Van Oosten MJ, Pepe O, De Pascale S, Silletti S, Maggio A (2017) The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chem Biol Technol Agric 4:5

    Article  Google Scholar 

  • Voss-Fels K, Snowdon RJ (2016) Understanding and utilizing crop genome diversity via high-resolution genotyping. Plant Biotechnol J 14:1086–1094

    Article  CAS  PubMed  Google Scholar 

  • Wally OSD, Critchley AT, Hiltz D, Craigie JS, Han X, Zaharia LI, Abrams SR, Prithiviraj B (2013) Regulation of phytohormone biosynthesis and accumulation in Arabidopsis following treatment with commercial extract from the marine macroalga Ascophyllum nodosum. Plant Growth Regul 32:324–339

    Article  CAS  Google Scholar 

  • Wang T, Jonsdottir R, Ólafsdóttir G (2009) Total phenolic compounds, radical scavenging and metal chelation of extracts from Icelandic seaweeds. Food Chem 116:240–248

    Article  CAS  Google Scholar 

  • Yadav DS, Rai R, Mishra AK, Chaudhary N, Mukherjee A, Agrawal SB, Agrawal M (2019) ROS production and its detoxification in early and late sown cultivars of wheat under future O3 concentration. Sci Total Environ 659:200–210

    Article  CAS  PubMed  Google Scholar 

  • Yakhin OI, Lubyanov AA, Yakhin IA, Brown PH (2017) Biostimulants in plant science: a global perspective. Front Plant Sci 7:671

    Article  Google Scholar 

  • Yang F, Liang G, Liu D, Yu D (2009) Arabidopsis MiR396 mediates the development of leaves and flowers in transgenic tobacco. J Plant Biol 52:475–481

    Article  CAS  Google Scholar 

  • Zodape ST, Mukhopadhyay S, Eswaran K, Reddy MP, Chikara J (2010) Enhanced yield and nutritional quality in green gram (Phaseolus radiata L) treated with seaweed (Kappaphycus alvarezii) extract. J Sci Ind Res 69:468–471

    CAS  Google Scholar 

  • Zou P, Lu X, Zhao H, Yuan Y, Meng L, Zhang C, Li Y (2019) Polysaccharides derived from the brown algae Lessonia nigrescens enhance salt stress tolerance to wheat seedlings by enhancing the antioxidant system and modulating intracellular ion concentration. Front Plant Sci 10:48

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thiyam General .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chandra, D., General, T. (2022). Leveraging Seaweeds as a Potential Biostimulant for Agriculture Sustainability. In: Ranga Rao, A., Ravishankar, G.A. (eds) Sustainable Global Resources Of Seaweeds Volume 1. Springer, Cham. https://doi.org/10.1007/978-3-030-91955-9_25

Download citation

Publish with us

Policies and ethics