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Abstract 
 

At least 10,000 virus species have the capacity to infect humans, but at present, the vast majority are 
circulating silently in wild mammals1,2. However, climate and land use change will produce novel 
opportunities for viral sharing among previously geographically-isolated species of wildlife3,4. In some 
cases, this will facilitate zoonotic spillover—a mechanistic link between global environmental change 
and disease emergence. Here, we simulate potential hotspots of future viral sharing, using a 
phylogeographic model of the mammal-virus network, and projections of geographic range shifts for 
3,139 mammal species under climate change and land use scenarios for the year 2070. We predict that 
species will aggregate in new combinations at high elevations, in biodiversity hotspots, and in areas of 
high human population density in Asia and Africa, driving the novel cross-species transmission of their 
viruses an estimated 4,000 times. Because of their unique dispersal capacity, bats account for the majority 
of novel viral sharing, and are likely to share viruses along evolutionary pathways that will facilitate 
future emergence in humans. Surprisingly, we find that this ecological transition may already be 
underway, and holding warming under 2°C within the century will not reduce future viral sharing. Our 
findings highlight an urgent need to pair viral surveillance and discovery efforts with biodiversity surveys 
tracking species’ range shifts, especially in tropical regions that harbor the most zoonoses and are 
experiencing rapid warming.
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Main Text 

 
In the face of rapid environmental change, survival for many species depends on moving to track shifting 
climates. Even in a best case scenario, many species’ geographic ranges are projected to shift a hundred 
kilometers or more in the next century5,6. In the process, many animals will bring their parasites and 
pathogens into new environments. This poses a measurable threat to global health, particularly given 
several recent epidemics and pandemics of viruses that originate in wildlife (zoonotic viruses, or 
zoonoses)7,8. Most frameworks for predicting cross-species transmission therefore focus on the steps that 
allow animal pathogens to make the leap to human hosts (a process called spillover)8,9. However, zoonotic 
viruses are a small fraction of total viral diversity, and viral evolution is an undirected process, in which 
humans are only one of at least ∼6,500 mammal hosts with over 21 million possible pairwise combinations 
(to say nothing of the other four classes of vertebrates, which have a much greater fraction of undescribed 
viral diversity). If those host species track shifting climates, they will share viruses not just with humans, 
but with each other, for the very first time3,4. Despite their indisputable significance, spillover events are 
probably just the tip of the iceberg; by numbers alone, most cross-species transmission events attributable 
to climate change will probably occur among wildlife hosts, potentially threatening wildlife populations 
and largely undetected by zoonotic disease surveillance. 

The scale of this process will depend on opportunity and compatibility10,11, and both dimensions pose 
an important predictive challenge. Because only a few species are common worldwide, most hosts have no 
opportunity to exchange pathogens: of all possible pairs of mammal species, only ∼7% share any 
geographic range, and only ∼6% are currently known to host one or more of the same virus species 
(hereafter viral sharing)10. As host geographic ranges shift, some interactions will become possible for the 
first time, and a subset will lead to viral establishment in a previously-inaccessible host (novel viral 
sharing). The potential ability of species to track shifting climate and habitat conditions will determine 
which pairs of species encounter each other for the first time. Once species’ ranges nominally overlap, 
habitat selection and behavioral differences can further limit contact. Although some viruses spread 
environmentally or by arthropod vectors between spatially proximate species with no direct behavioral 
contact, sharing is more likely on average among species with more ecological overlap. Even among 
species in close contact, most cross-species transmission events are still a dead end. Progressively smaller 
subsets of viruses can infect novel host cells, proliferate, cause disease, and transmit onward in a new host. 
Their ability to do so is determined by compatibility between viral structures, host cell receptors, and host 
immunity. Because closely-related species share both ecological and immunological traits through identity 
by descent, phylogeny is a strong predictor of pathogen sharing and of susceptibility to invasion by new 
viruses11. In a changing world, these mechanisms can help predict how ecosystem turnover could impact 
the global virome. 

Although several studies have mapped current hotspots of emerging diseases2,7,12, few have forecasted 
them in the context of global change. With the global reassortment of animal biodiversity due to climate 
and land use change, it is unknown whether bats and rodents will still play a central role in viral emergence2 

(ED Figure 1), or whether hotspots of viral emergence will stay in tropical rainforests12, which currently 
harbor most undiscovered viruses2. Here, by projecting newly suitable habitat (which a species may or may 
not migrate to) and applying mechanistic biological rules for cross-species transmission, we predicted how 
and where global change could potentially create novel opportunities for viral sharing, with particular 
attention to the potential connections between these risks and human health. We focused on mammals 
because they have some of the most complete biodiversity data, the highest proportion of viral diversity 
described1, and the greatest downstream relevance to human health and zoonotic disease emergence of any 
vertebrate class. We built species distribution models (SDMs) for 3,870 placental mammal species, and 
projected potential geographic range shifts based on four paired scenarios for climate change ACCELE
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(Representative Concentration Pathways, RCPs) and land use change (Shared Socioeconomic Pathways, 
SSPs) by 2070. These scenarios characterize alternative futures for global environmental change, from 
sustainable land use change and a high chance of keeping global warming under 2◦C (SSP1-RCP2.6), to a 
high chance of > 4◦C warming, continued fossil fuel reliance, and rapid land degradation and change (SSP5-
RCP8.5; see “Methods” for a detailed explanation). We present results for SSP1-RCP 2.6 in the main text 
because this scenario is most in line with the goals of the Paris Agreement to keep global warming “well 
below” 2◦C13. We quantified model uncertainty in projected climate futures using nine global climate 
models (GCM) from the Coupled Model Intercomparison Project Phase 6 (CMIP6). Because many species 
are unlikely to be biologically suited for rapid range shifts, and will therefore move slower than the local 
velocity of climate change, we constrained the speed of range shifts based on inferred allometric scaling of 
animal movement14, and compared scenarios that assumed limited dispersal against “full dispersal” (that 
is, no dispersal limitation). 

We used projections of newly suitable habitat to identify where novel range overlap among currently 
non-overlapping species could happen in the future (hereafter first encounters). We then used a recently-
developed viral sharing model to predict the probability of a novel viral sharing event—here defined as the 
future cross-species transmission of at least one virus species, in this case between a pair of hosts during 
first encounters—based on novel geographic overlap and host phylogenetic similarity10, a first order 
approximation of opportunity and compatibility (ED Figure 2). This model framework has previously 
provided insights into viral macroecology and zoonotic risk based on the ∼1% of the global mammalian 
virome that has been described1,2,10. Based on the total number and distribution of first encounters among 
a subset of 3,139 species (see “Methods”), we used cumulative viral sharing probabilities to estimate the 
total number of novel sharing events that are expected (each of which describes the crossspecies 
transmission of at least one virus). Using this approach, we tested the hypothesis that environmental change 
should alter mammal communities in ways that expose hosts to novel viruses, altering the structure of the 
whole mammal-virus network. 

 
 
Impacts of climate and land use change 

 
If species range shifts can keep pace with climate change, we predict that the vast majority of mammal 
species will overlap with at least one unfamiliar species somewhere in their potential future range, 
regardless of emissions scenario (mean across GCMs ± s.d. here and after; RCP 2.6: 98.6% ± 0.2%; RCP 
8.5: 96.6% ± 0.8%). At the global level, geographic range shifts would permit over 300,000 first encounters 
in every climate scenario (SSP1-RCP 2.6: 316,426 ± 1,719; SSP5-RCP 8.5: 313,973 ± 2,094; Figure 1 and 
ED Figure 3). Compared to a present-day baseline, in which we calculated 345,850 current pairwise 
overlaps among the 3,870 species (∼7%), this essentially represents a doubling of potential species contact. 
These “first encounters” between mammal species will occur everywhere in the world, but are concentrated 
in tropical Africa and southeast Asia (ED Figure 4). This result was counter to expectations that species 
might aggregate at higher latitudes, given that previous work has anticipated a link between climate change, 
range shifts, and parasite host-switching in the Arctic15,16. However, we find that when species shift along 
latitudinal gradients, they travel in the same direction as others that are already included in their 
assemblage, leading to few first encounters. In contrast, when species track thermal optima along 
elevational gradients (allowing them to come from different directions; i.e., mountains force species to 
cluster), they will aggregate in the most novel combinations in mountain ranges, especially in tropical areas 
with the highest baseline diversity, matching prior predictions17. This pattern was robust to climate model 
uncertainty (Supplemental Figures 3-11) and to differences in dispersal capacity (e.g., Figure 2C). The 
most notable model variation is in the Amazon basin, as well as a small portion of the central African basin, 
Botswana, and parts of the Indian subcontinent (ED Figure 5). These areas become essentially devoid of 
first encounters in the most sensitive climate models and warmest pathways, presumably because all are ACCELE
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high-endemism basins of homogenous climate that may warm too much for species to “escape” into high-
elevation refugia (a fairly well-documented pattern18,19,20). 

This global re-organization of mammal assemblages is projected to dramatically impact the structure 
of the mammalian virome. Accounting for geographic opportunity and phylogenetic compatibility, we 
project that a total of 316,426 (±1,719) first encounters in RCP 2.6 would lead to 15,311 novel sharing 
events (± 140)—that is, a minimum of at least ∼15,000 cross-species transmission events of at least one 
novel virus (but potentially many more) between a pair of naive host species. Assuming that viral sharing 
will initially be localized to areas of novel host overlap, we mapped expected viral sharing events, and 
found again that most sharing should occur in high-elevation, species-rich ecosystems in Africa and Asia 
(Figure 1A). If species survive a changing climate by aggregating in high elevation refugia, this suggests 
emerging viruses may be an increasing problem for their conservation21,22. Across scenarios, the spatial 
pattern of expected sharing events was nearly identical, and was dominated more by the extent of potential 
range shifts than by underlying community phylogenetic structure (ED Figure 6; Supplemental Figures 12-
20). Though previous work has suggested that the phylogenetic structure of mammal communities might 
drive continental hotspots of pathogen sharing and emergence23, in our framework, opportunity drives 
spatial patterns more than compatibility. Given that phylogeny is a strong determinant of viral sharing in 
the underlying model, this difference from previous studies can probably be explained by evolutionary 
scale, where prior work focused on primates, and our study includes all mammals. At this broader scale, 
predicted viral sharing patterns mostly track total richness (see Figure 3B in10), and at finer scales, 
phylogeny has a stronger effect. 

 
Dispersal drives the importance of bats 

 
Species’ intrinsic dispersal capacity is likely to constrain their ability to move to newly suitable locations, 
and therefore to limit novel viral sharing (as are harder to predict extrinsic factors, such as landscape 
connectivity or facilitated migration by conservation efforts). We limited the dispersal potential of 
flightless species based on an established allometric scaling with body size, trophic rank, and generation 
time14. Dispersal limits caused substantial reductions in predicted potential range expansions across all 
scenarios, especially for higher warming scenarios, and therefore drove a reduction in first encounters and 
novel viral sharing. Even in RCP 2.6 (the scenario with the least warming), limiting dispersal reduced the 
number of first encounters by 61% (± 0.3%), and reduced the associated viral sharing events by 70% (± 
0.1%) to 4,584 (± 52) projected viral sharing events. Because trophic position and body size determine 
dispersal capacity, carnivores account for a slightly disproportionate number of first encounters, while 
ungulates and rodents have slightly fewer first encounters than expected at random (ED Figure 7). Spatial 
patterns also changed dramatically when dispersal constraints were added, with the majority of first 
encounters and cross-species viral transmission events occurring in southeast Asia (Figure 1B, ED Figures 
4, 6). This viral sharing hotspot is driven disproportionately by bats, because their dispersal was left 
unconstrained within continents; we made this choice given their exclusion from previous research 
characterizing the dispersal capacity of range-shifting mammals14, genetic evidence that flight allows 
bats—and their viruses—to often circulate at continental levels24,25, and data suggesting that bat 
distributions are already undergoing disproportionately rapid shifts26,27,28,29,30,31,32,33,34. Bats account for 
nearly 90% of first encounters after constraining dispersal in any climate scenario (RCP 2.6: 88% ±0.1%; 
RCP 8.5: 89% ±0.5%), and dominate the spatial pattern, with most of their first encounters restricted to 
southeast Asia (Figure 2). 

Bats’ unique capacity for flight could be an important and previously unconsidered link between 
climate-driven range shifts and future changes in the mammal virome. Even nonmigratory bats can 
regularly travel hundreds of kilometers within a lifetime, far exceeding what small mammals might be able 
to cover in 50 years; half of all bat population genetic studies have failed to find any evidence for isolation 
by distance35. This unique dispersal capacity has inevitable epidemiological implications, with recent ACCELE
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evidence suggesting that continental panmixia may be common for zoonotic reservoirs, allowing viral 
circulation at comparable scales24,25,36. Several studies have also identified ongoing rapid range expansions 
in bat species around the world26,27,28,29,30,31,32,33,34, with little mention in the broader climate change or 
emerging disease literature. If flight does allow bats to undergo more rapid range shifts than other 
mammals, we expect they should drive the majority of novel cross-species viral transmission, and likely 
bring zoonotic viruses into new regions. However, their ability to move rapidly might be attenuated by the 
other biotic constraints to species distributions (e.g., social behavior and food availability, which are 
unaddressed by the current approach). This uncertainty adds an important new dimension to ongoing debate 
about whether bats are unique in their higher viral richness, higher proportion of zoonotic viruses, or 
immune adaptations compared to other mammals2,11. 

 
Zoonotic emergence and human health 

 
The impacts of climate change on mammalian viral sharing patterns are likely to cascade in future 
emergence of zoonotic viruses. Among the thousands of expected viral sharing events, some of the highest-
risk zoonoses or potential zoonoses are likely to find new hosts. This may eventually pose a threat to human 
health: the same general rules for cross-species transmission explain spillover patterns for emerging 
zoonoses11, and the viral species that make successful jumps across wildlife species have the highest 
propensity for zoonotic emergence2. Just as simian immunodeficiency virus making a host jump from 
monkeys to chimpanzees and gorillas facilitated the origins of HIV, or SARS-CoV spillover into civets 
allowed a bat virus to reach humans, these kinds of wildlife-to-wildlife host jumps may be evolutionary 
stepping stones for the ∼10,000 potentially zoonotic viruses that are currently circulating in mammal 
hosts1. 

To illustrate this problem at the scale of a single pathogen’s “sharing network” (the set of all hosts 
known or suspected to host the virus, and likely to share with those known hosts), we constructed a sub-
network of 13 possible hosts of Zaire ebolavirus (ZEBOV) in Africa, and projected possible first encounters 
involving these species (Figure 3A-C, ED Figure 8). We project these 13 species to encounter 3,695 (±49) 
new mammals in RCP 2.6, with a modest reduction to 2,627 (±44) species when accounting for dispersal 
limitation, and little variation among climate scenarios (RCP 8.5: 3,529 ± 47 encounters without dispersal 
limits; 2,455 ± 88 with dispersal limits). Even with dispersal limits, these first encounters are predicted to 
produce almost one hundred new viral sharing events (RCP 2.6: 96 ± 2; RCP 8.5: 86 ± 4) that might include 
ZEBOV, and which cover a much broader part of Africa than the current zoonotic niche of Ebola37. Human 
spillover risk aside, this could expose several new wildlife species to a deadly virus historically responsible 
for sizable primate die-offs38. Moreover, for zoonoses like Zaire ebolavirus without known reservoirs, 
future host jumps—and therefore, the emergence of a larger pool of potential reservoirs covering a greater 
geographic area (e.g., potential introduction of Zaire ebolavirus to east African mammals)—would only 
complicate ongoing efforts to trace the sources of spillover and anticipate future emergence. Ebola is far 
from unique: with 8,429 ± 228 first encounters in RCP 2.6 between bats and primates, leading to an 
expected 110 ± 4 new viral sharing events even with dispersal limits (Figure 3D; RCP 8.5: 7,326 ± 667 
first encounters, 90 ± 8 sharing events), many potential zoonoses are likely to experience new evolutionary 
opportunities because of climate change. 

Future hotspots of novel mammal assemblages and viral evolution are projected to coincide with areas 
of high human population density, further increasing vulnerability to potential zoonoses. Potential first 
encounters are disproportionately likely to occur in areas that are projected to be either human settled or 
used as cropland and less likely to occur in forests (Figure 2E), despite current literature suggesting that 
forests harbor most emerging and undiscovered viruses (Figure 4)12. This finding is consistent for bats and 
non-bats, and may be an accident of geography, but more likely represents the tendency of human 
settlements to aggregate on continental edges and around biodiversity hotspots39. Regardless of ACCELE
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mechanism, we predict that tropical hotspots of novel viral sharing will broadly coincide with high 
population density areas in 2070, especially in the Sahel, the Ethiopian highlands and the Rift Valley, India, 
eastern China, Indonesia, and the Philippines (Figure 4). Some European population centers also land in 
these hotspots; recently emergent pathogens in this region like Usutu virus highlight that these populations 
can still be vulnerable, despite greater surveillance and healthcare access. If range-shifting mammals create 
ecological release for undiscovered zoonoses, populations in any of these areas are likely to be vulnerable, 
and some viruses will be able to spread globally from any of these population centers. 

 
 
Impacts of climate change mitigation 

 
Whereas most studies agree that climate change mitigation through reducing greenhouse gas emissions 
will prevent extinctions and minimize harmful ecosystem impacts40, our results suggest that mitigation 
alone cannot reduce the likelihood of climate-driven viral sharing. Instead, the mildest scenarios for global 
warming appear likely to produce at least as much or even more cross-species viral transmission: when 
warming is slower, species can successfully track shifting climate optima, leading to more potential for 
range expansion, and more first encounters. Accounting for dispersal limits, species are projected to 
experience a median potential loss of 0.3% (± 2.5%) of their range in RCP 2.6, with 49.8% (± 3.8%) 
experiencing a net potential increase in range; in contrast, species were predicted to experience a 26.2% (± 
13.2%) median potential loss in RCP 8.5, and only 30.8% (±5.45%) potentially gained any range (ED 
Figure 3A). In fact, in RCP 8.5, we projected that 261 (± 76) species could lose their entire range, with 162 
(± 53) attributable to dispersal limits alone. As a result, there were 5.4% (±1.7%) fewer potential first 
encounters in RCP 8.5 compared to RCP 2.6, and unexpectedly, a 1.9% (± 0.3%) predicted reduction in 
the connectivity of the future global viral sharing network (ED Figure 3B,D). Overall, our results indicate 
that a mild perturbation of the climate system could create thousands of new opportunities for viruses to 
find new hosts. 

We caution that these results should not be interpreted as a justification for inaction, or as a possible 
upside to unmitigated warming, which will be accompanied by mass defaunation, devastating disease 
emergence, and unprecedented levels of human displacement and global instability40. Rather, our results 
highlight the urgency of better wildlife disease surveillance systems and public health infrastructure as a 
form of climate change adaptation, even if mitigation efforts are successful and global warming stays below 
+2°C above pre-industrial levels. 

 
 
The timing of ecological opportunity 

 
As a final analysis, we explored the potential timing of climate change impacts. We expected that most 
first encounters would occur later in the 21stcentury, given the time required for species’ habitats to shift 
(especially with dispersal constraints). To test this hypothesis, we reproduced our analysis with an entirely 
new climate product (CHELSA v2.1; see Methods) that allowed us to set a baseline in the recent past 
(1981-2010) and explore three time intervals of future impacts (2011-2040; 2041-2070; 2071-2100). 
Projecting species distributions under the mean conditions in each interval, we identified the cumulative 
number of unique first encounters in each. Surprisingly, we found that the majority of first encounters occur 
by the 2011-2040 period (Figure 5), although steady and sizeable increases continue through the rest of the 
century. Differences in the number of first encounters between time intervals (e.g., RCP 2.6, 2011-2040, 
climate + land use: 391,716 ±2,322; vs. RCP 2.6, 2071-2100, climate + land use: 415,703 ±3,537) are 
substantially greater than differences driven by climate scenarios and climate model uncertainty (e.g., 
climate + land use, 2071-2100: lowest GCM-RCP combination: 413,120 in RCP 2.6, GCM GFDL-ESM4 
vs. highest GCM-RCP combination: 421,917 in RCP 2.6, GCM IPSL-CM6ALR), indicating that first 
encounters continue to non-trivially accumulate over time. However, those differences are still 
substantially less than the difference created by dispersal assumptions (e.g., RCP 2.6, 2071-2100, climate ACCELE
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+ land use: 415,703 ± 3,537; vs. RCP 2.6, 2071-2100, climate + land use + dispersal: 166,527 ± 1,905), 
and the proportion of future first encounters is much higher when dispersal maxima are restricted (see 
Figure 5). Put more succinctly: species continue to meet throughout the century, and our simulations 
indicate that how fast species move will matter more to the timing and magnitude of first encounters than 
how fast suitable habitat moves or has already moved. In addition, the geography of first encounters 
remains consistent across all points in time (ED Figures 9,10). 

Overall, these findings suggest that in a world that has already passed +1°C of global warming, the 
majority of climate-related opportunities for novel viral sharing may already have been realized—if and 
only if species’ dispersal has kept pace with shifting habitat suitability. That premise, and particularly our 
simulation of bats as unconstrained by dispersal limits, is more tenuous over smaller timescales; research 
is urgently needed that estimates the real-time signal of climate-attributable range shifts. Even if these 
opportunities exist, the timing of cross-species transmission itself remains uncertain and unpredictable; our 
viral sharing model is trained on an equilibrium level of connectivity, and we expect some degree of lag 
between interspecific contact and viral establishment. It is certainly possible or even likely that climate 
change is already reshaping the mammalian virome, and as warming continues over the next half-century, 
we predict that both the opportunities created for ecological novelty and resulting impacts on viral 
assemblages will begin to saturate. 

 
 
Conclusions 

 
Our study establishes a macroecological link between climate change and cross-species viral transmission. 
The patterns we describe are likely further complicated by uncertainties in the species distribution modeling 
process, including local adaptation or plasticity in response to changing climates, or lack of landscape 
connectivity preventing dispersal. The projections we make are also likely to be complicated by several 
ecological factors, including the temperature sensitivity of viral host jumps41; potential independence of 
vector or non-mammal reservoir range shifts; or the possibility that defaunation especially at low elevations 
might interact with disease prevalence through biodiversity dilution and amplification effects not captured 
by our models42. Future work can expand the scope of our findings to other host-parasite systems4; our 
approach, which combines viral sharing models with species distribution modeling approaches for 
thousands of species, is readily applied to other datasets. Birds have the best documented virome after 
mammals, and account for the majority of non-mammalian reservoirs of zoonotic viruses43; changing bird 
migration patterns in a warming world may be especially important targets for prediction. Similarly, with 
amphibians facing disproportionately high extinction rates due to a global fungal panzootic, and emerging 
threats like ranavirus causing conservation concern, pathogen exchange among amphibians may be 
especially important for conservation practitioners to understand44. Finally, marine mammals are an 
important target given their exclusion here, especially after a recent study implicating reduced Arctic sea 
ice in novel viral transmission between pinnipeds and sea otters—a result that may be the first proof of 
concept for our proposed climate-disease link45. 

Our study provides the first template for how surveillance could target future hotspots of viral 
emergence in wildlife. In the next decade alone, it could cost at least a billion dollars to comprehensively 
identify and counteract zoonotic threats before they spread from wildlife reservoirs into human 
populations46. These efforts will be undertaken during the greatest period of global ecological change 
recorded in human history, and in a practical sense, the rapid movement of species (and their virome) poses 
an unexpected challenge for virological research. While several studies have addressed how range shifts in 
zoonotic reservoirs might expose humans to novel viruses, few have considered the fact that most new 
exposures will be among wildlife species. The relevance of this process is reinforced by the COVID-19 
pandemic, which began only weeks after the completion of this study; the progenitor of SARS-CoV-2 
likely originated in southeast Asian horseshoe bats (Rhinolophus sp.), and may have spread to humans 
through an as-yet-unknown bridge host47. While we caution against overinterpreting our results as ACCELE
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explanatory of the current pandemic (e.g.,48), our findings suggest that climate change could easily become 
the dominant anthropogenic force in viral cross-species transmission, which will undoubtedly have a 
downstream impact on human health and pandemic risk. Tracking viral spillover into humans is paramount, 
but so is monitoring of viral transmission among wildlife species. Targeting surveillance in future hotspots 
of cross-species transmission like southeast Asia, and developing norms of open data sharing for the global 
scientific community, will help researchers identify host jumps early on, ultimately improving our ability 
to respond to potential threats.
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Figures (Captions) 

 
 

Figure 1: Climate change will drive novel viral sharing among mammal species. The projected number 
of novel viral sharing events among mammal species in 2070 based on host species geographic range shifts 
from climate and land use change (SSP1-RCP 2.6), without dispersal limits (A) and with dispersal 
limitation (B). Results are averaged across nine global climate models. 

 
Figure 2: Bats disproportionately drive future novel viral sharing. The spatial pattern of first encounters 
(in SSP1-RCP 2.6) differs among range-shifting mammal pairs including bat-bat and bat-nonbat encounters 
(A) and only encounters among non-bats (B). Using a linear model, we show that elevation (C), species 
richness (D), and land use (E) influence the number of new overlaps for bats and non-bats across scenarios 
(RCPs paired with SSPs as described in Methods; n = 9 global climate model replicates). Slopes for the 
elevation effect were generally steeply positive: a log10-increase in elevation was associated with between 
a 0.4-1.41 log10-increase in first encounters. Results are averaged across nine global climate models. 
Legends refer to scenarios: CL gives climate and land use change, while CLD adds dispersal limits. Error 
bars in panel E are the standard error of the model estimate.  
 
Figure 3: Range expansions will expose naive hosts to zoonotic reservoirs. (A) The predicted 
distribution of known African hosts of Zaire ebolavirus. (B) The change in richness of these hosts as a 
result of range shifts (SSP1-RCP 2.6). (C) Projected first encounters with non-Ebola hosts. (D) Bat-primate 
first encounters are projected to occur globally, producing novel sharing events. Results are averaged across 
nine global climate models. 

 
Figure 4: Novel viral sharing events coincide with human population centers. In 2070 (SSP1RCP 2.6; 
climate only), human population centers in equatorial Africa, south China, India, and southeast Asia will 
overlap with projected hotspots of cross-species viral transmission in wildlife. (Both variables are linearly 
rescaled to 0 to 1.) Results are averaged across nine global climate models. 

 
Figure 5: Projected timing of first encounters. By tracking the identity of each species pair, we simulate 
first encounters as cumulative (the same pair cannot meet for the first time at two timepoints). Results are 
broken down by whether each climate (C) scenario includes land use change (L) and dispersal limits (D). 
Light points give one of fifteen climate scenarios (5 GCMs with 3 RCPs each); dark points are means for 
each RCP. Points are plotted at the start of each thirty year window.
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Methods 

 
In this study, we develop global maps for terrestrial mammals characterizing their habitat use and their 
ecological niche as a function of climate. We project these into paired climate-land use futures for 2070, 
with dispersal limitations set by biological constraints for each species. For a final subset of 3,139 species, 
we predict the probability of viral sharing among species pairs using a model of the mammalian viral 
sharing network that is trained on phylogenetic relatedness and current geographic range overlaps. With 
that model, we map the projected hotspots of new viral sharing in different futures. All analyses were 
conducted in the software R (v4.1.3). Analysis and visualization code is available on a Github repository 
(github.com/viralemergence/iceberg). 

 
 
Data 

 
Mammal virus data 

 
Our understanding of viral sharing patterns is based on a dataset previously published by Olival et al.50. 
The dataset describes 2,805 known associations between 754 species of mammalian host and 586 species 
of virus, scraped from the taxonomic data stored in the International Committee on Taxonomy of Viruses 
(ICTV) database. These data have previously been used in several studies modeling global viral diversity 
in wildlife1,51,52, including a previous study that developed the model of viral sharing we use here10. As 
that model is reproduced exactly in our study, we have made no further modifications to the data, and 
more detailed information on data management (e.g., the exclusion of Homo sapiens from that analysis) 
can be found in the Albery et al. publication10. 

 
 

Biodiversity data 
 

We downloaded Global Biodiversity Informatics Facility (GBIF: gbif.org) occurrence records for all 
mammals based on taxonomic names resolved by the IUCN Red List. Records spanned the years 1658 to 
2019 and were intended to provide a comprehensive baseline of species distributional data for as many 
mammal species as possible. These records were filtered to those within a 10 km buffer of species’ IUCN 
range maps, and further filtered using a Grubbs outlier test (see below); this procedure is likely to 
eliminate most signal of climate-driven geographic range shifts from recent sightings. If any of that signal 
persists after these steps, there are two possible impacts on models: extending the geographic extent 
attributed to a species’ current range, and potentially, expanding the climatic envelope that a model 
identifies as suitable for its presence. Both of these would increase the predicted rate of overlap among 
species pairs in their current (modeled) distributions, and reduce the predicted number of first encounters, 
making our predictions more conservative. 

We developed species distribution models for all 3,870 species with at least three unique terrestrial 
presence records at a 0.25 degree spatial resolution (approximately 25km by 25 km at the equator). In 
order to focus on species occurrence, we retained one unique point per 0.25 degree grid cell. This spatial 
resolution was chosen to match the available resolution of land use change projections (see below). Spatial 
and environmental outliers were removed based on Grubbs outlier tests53. To implement the Grubbs 
outlier tests for a given species we defined a distance matrix between each record and the centroid of all 
records (in both environmental or geographic space, respectively) and determined whether the record with 
the largest distance was an outlier with respect to all other distances, at a given statistical significance (p 
= 1e −3, in order to exclude only extreme outliers). If an outlier was detected it was removed and the test 
was repeated until no additional outliers were detected. 
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Climate and land use data 

 
Climate and land use data were compiled from WorldClim 254 and the Land Use Harmonization 2 (LUH2) 
project55 respectively, for both baseline conditions (operationalized as 1970-2000 for the climate data, 2015 
for land use, and 2020 for dispersal limits; see “The effect of recent warming” for an interrogation of the 
difference between climate baselines and actual presentday climate) and a half-century in the future 
(operationalized as 2061-2080 for climate, 2070 for land use, and 2070 for dispersal). 

The WorldClim dataset is widely used in ecology, biodiversity, and agricultural projections of potential 
climate change impacts. WorldClim makes data available for current and future climates in the form of 19 
pre-processed bioclimatic variables (Bioclim: BIO1-19). In order to reduce collinearity among climate 
variables in the species distribution models, we selected five Bioclim variables from the full set of 19 
Bioclim variables: mean annual temperature (BIO1), temperature seasonality (BIO4), annual precipitation 
(BIO12), precipitation seasonality (coefficient of variation; BIO15), and precipitation of the driest quarter 
(BIO17). This is the largest set of Bioclim variables possible that keeps their correlation over a global 
extent suitably low (r < 0.7). The Bioclim variables for the historical climate are the mean from 1970-2000, 
and those for the future climate are the mean from 2060-2080. 

To account for model uncertainty in climate projections, we used projections for future climates from 
all nine global climate models (GCMs) currently available on WorldClim 2 and participating in the Coupled 
Model Intercomparison Project 6 (CMIP6), the most recent generation of climate models: BCC-CSM2-
MR, CNRM-CM6-1, CNRM-ESM2-1, CanESM5, GFDL-ESM4, IPSL-CM6A-LR, MIROC-ES2L, 
MIROC6, and MRI-ESM2-0. These nine GCMs encompass a wide range of effective climate sensitivities 
from 2.6K (MIROC6) to 5.6K (CanESM5) compared with a range of 1.8-5.6K across 27 CMIP6 models 
and 2.1-4.7K for CMIP549. Temperature and precipitation for future climates have been downscaled and 
bias-corrected by WorldClim 2 using a change factor approach. The multi-year average of the GCM output 
for minimum temperature, maximum temperature and total precipitation is calculated for each month of 
the simulated historical and future period, and the absolute (for temperature) or proportional (for 
precipitation) difference in these values is then calculated, resulting in climate anomalies which are then 
applied to the 10-minute spatial resolution observed historical dataset54,56. WorldClim 2 then calculates 
Bioclim variables based on these downscaled and bias-corrected data. This approach makes the assumption 
that the change in climate is relatively stable across space (that is, has high spatial autocorrelation). We 
downloaded the five pre-processed Bioclim variables for all nine GCMs at 10 minutes spatial resolution 
from WorldClim 254, and aggregated with bilinear interpolation to 0.25 degree spatial resolution 
(approximately 25km at the equator) to match with the LUH2 land use data resolution. 

Historical land-use data for 2015 and projected land-use data for 2070 were obtained from the Land 
Use Harmonization 2 (LUH2) project at 0.25 degree spatial resolution57,55. The LUH2 data reconstructs 
and projects changes in land use among twelve categories: primary forest, non-forested primary land, 
potentially forested secondary land, potentially non-forested secondary land, managed pasture, rangeland, 
cropland (four types), and urban land. To capture species’ habitat preferences, we downloaded data for all 
3,870 mammal species from the IUCN Habitat Classification Scheme (version 3.1) and mapped the 104 
unique IUCN habitat classifications onto the twelve land use types present in the LUH2 dataset following 
Powers et al.58 (Supplemental Table 1). 

Finally, we downloaded global population projections from the SEDAC Global 1-km Downscaled 
Population Base Year and Projection Grids Based on the SSPs version 1.059, and selected the year 2070 
for RCP 2.6 (see “Climate and land use futures”). These data are downscaled to 1km from a previous 
dataset at 7.5 arcminute resolution60. We aggregated 1 km grids up to 0.25 degree grids for compatibility 
with other layers, again using bilinear interpolation. 
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A handful of smaller datasets were incidentally used throughout the study. These included the IUCN Red 
List, which was used to obtain species taxonomy, range maps, and habitat preferences61; the US Geological 
Survey Global Multi-resolution Terrain Elevation Data 2010 dataset, which was used to derive a gridded 
elevation in meters at ∼25km resolution; and a literaturederived list of suspected hosts of Ebola virus62. 

 
 
Mapping species distributions 

 
We developed species distribution models for a total of 3,870 species in this study, divided into two 
modeling pipelines based on data availability (Supplemental Figures 1 and 2). 

 
 

Poisson point process models 
 

For 3,088 species with at least 10 unique presence records, Poisson point process models (PPMs), a method 
closely related to maximum entropy species distribution models (MaxEnt), were fit using regularized 
downweighted Poisson regression63 with 20,000 background points, using the R package glmnet64,65,64. 
The spatial domain of predictions was chosen based on the continent(s) where a species occurred in their 
IUCN range map; as a final error check, species ranges were constrained to a 1,000 km buffer around their 
IUCN ranges. We trained species distribution models on current climate data using the WorldClim 2 data 
set54, using the five previously-specified Bioclim variables. 

To reduce the possibility of overfitting patterns due to spatial aggregation, we used spatially stratified 
cross validation. Folds were assigned by clustering records based on their coordinates and splitting the 
resulting dendrogram into 25 groups. These groups were then randomly assigned to five folds. (If species 
had fewer than 25 records, a smaller number of groups was used based on sample size, and these were split 
into five folds.) This flexible approach accounts for variation in the spatial scale of aggregation among 
species by using the cluster analysis. By splitting into 25 groups initially (rather than 5) we obtain better 
environmental coverage (at least on average) within a fold and minimize the need to extrapolate for 
withheld predictions. 

Linear (all species), quadratic (species with >100 records), and product (species with >200 records) 
features were used. Positive coefficients of quadratic features are not allowed (i.e. all have an upper bound 
of 0 in the model-fitting process), to avoid the undesirable effect of increasing suitability predictions at 
range edges. The regularization parameter was determined based on 5-fold cross-validation with each fold, 
choosing a value 1 standard deviation below the minimum deviance66. This resulted in five models per 
species which were then combined in an unweighted ensemble. Continuous predictions of the ensemble 
were converted to binary presence/absence predictions by choosing a threshold based on the 5th percentile 
of the ensemble predictions at training presence locations. 

When models were projected into the future, we limited extrapolation to 1 standard deviation beyond 
the data range of presence locations for each predictor. This decision balances a small amount of 
extrapolation based on patterns in a species niche with limiting the influence of monotonically increasing 
marginal responses, which can lead to statistically unsupported (and likely biologically unrealistic) 
responses to climate. 

 
 

Range bagging models 
 

For an additional 783 poorly sampled species (3 to 9 unique points on the 25 km grid), we produced species 
distribution models with a simpler range bagging algorithm, a stochastic hullbased method that can estimate 
climate niches from an ensemble of underfit models67,68, and is therefore well suited for smaller datasets. 
From the full collection of presence observations and environmental variables range-bagging proceeds by 
randomly sampling a subset of presences (proportion p) and a subset of environmental variables (d). From 
these, a convex hull around the subset of points is generated in environmental space. The hull is then ACCELE
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projected onto the landscape with a location considered part of the species range if its environmental 
conditions fall within the estimate hull. The subsampling is replicated N times, generating N ‘votes’ for 
each cell on the landscape. One can then choose a threshold for the number of votes required to consider 
the cell as part of the species’ range to generate the binary map used in our downstream analyses. Based 
on general guidelines in67 we chose p = 0.33, d = 2, and N = 100. We then chose the voting threshold to 
be 0.165 (=0.33/2) because this implies that the cell is part of the range at least half the time for each 
subsample. Upon visual inspection, this generally lead to predictions that were very conservative about 
inferring that unsampled locations were part of a species distribution. The same environmental predictors 
and ecoregion-based domain selection rules were used for range bagging models as were used for the point 
process models discussed above. This hull-based approach is particularly valuable for poorly sampled 
species which may suffer from sampling bias because bias within niche limits has little effect on range 
estimates. 

 
Model validation and limitations 

 
PPM models performed well, with a mean test AUC under 5 fold cross-validation (using spatial clustering 
to reduce inflation) of 0.78 (s.d. 0.14). The mean partial AUC evaluated over a range of sensitivity relevant 
for SDM (0.8-0.95) was 0.81 (s.d. 0.09). The mean sensitivity of binary maps used to assess range overlap 
(based on the 5% training threshold used to make a binary map) was 0.90 (s.d. 0.08). Range bagging models 
were difficult to meaningfully evaluate because they were based on extremely small sample sizes (3-9). 
The mean training AUC (we did not perform cross-validation due to small sample size) was 0.96 (s.d. 
0.09). The binary maps had perfect sensitivity (1) because the threshold used to make them was chosen 
sufficiently low to include the handful of known presences for each species. One way to assess how well 
we inferred the range for these species is to quantify how much of the range was estimated based on our 
models, based on the number of (10 km) cells predicted to be part of the species range even when it was 
not observed there. The mean number of cells inferred to contain a presence was 254 (s.d. 503); however, 
the distribution is highly right skewed with a median of 90. This indicates that the range bagging models 
were typically relatively conservative about inferring ranges for poorly sampled species. 

Although our models performed well, we note that researchers should approach the interpretation of 
species distribution models (SDMs) with a certain degree of caution. Even adhering to best practices, many 
SDM methods are sensitive to subjective user-end choices that influence model performance, 
transferability, and interpretability. Some of those choices may have marginally affected the patterns we 
document in this study. For example, to quantify our results’ resilience to the choice of threshold, we 
constructed pairwise overlaps for the current range estimates of all species across three habitat suitability 
thresholds (1%, 5%, and 10%). We did this using the climate projections, the IUCN-clipped climate 
projections, and the land use and IUCN-clipped projections (see below sections), such that there were nine 
total replicates, only one of which (IUCN and land use-clipped 5% threshold) was used in our main 
analyses. We fitted the proportional overlap between each species pair across all nine replicates in a linear 
mixed model with the identity of the species pair and the thresholding replicate as random effects, to 
quantify the variance associated with the choice of processing pipeline compared to the variance associated 
with the species pair itself. We also examined the mean proportional overlap across the nine replicates. 
Our linear mixed model examining the variance associated with thresholding pipeline found that 
thresholding accounted for only 2.2% of the variance in proportional overlap, in contrast to the 72.3% 
accounted for by the identity of the species pair. Furthermore, there was very little difference observed in 
the mean proportional overlap and the number of overlapping species across thresholds. These results 
demonstrate that the choice of thresholding had an impact on the results of our analysis, but an extremely 
marginal one, and we expect similar results would be found for other choices like variable set reduction, 
model calibration, the resolution of predictor data, and the processing of point occurrence data. ACCELE
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Finally, we note that while many factors besides climate are ignored by our models, such as biotic 
interactions or animal social behavior, our models are tailored to our aim: predicting hotspots of elevated 
risk under climate change. In our application, correctly predicting presences is more important than 
incorrect prediction of absences, because we are focused on the potential for novel species overlap. We 
cannot say whether that overlap will happen, based on the multiple factors besides climate that influence 
distributions and range shifts, but we can say with confidence based on robust current niche estimates, 
validated with spatially stratified cross-validation, and biologically-grounded estimates of dispersal 
capacity where risk would be elevated in accordance with our simulations. 

 
 

Habitat range and land use 
 

To capture species’ habitat preference, we collated data for all 3,870 mammal species from the IUCN 
Habitat Classification Scheme (version 3.1). We then mapped 104 unique IUCN habitat classifications 
onto the twelve land use types present in the LUH2 dataset. For 962 species, no habitat data was available, 
or no correspondence existed between a land type in the IUCN scheme and our land use data; for these 
species, land use filters were not used. Filtering based on habitat was done as permissively as possible: 
species were allowed in current and potential future ranges to exist in a pixel if any non-zero percent was 
assigned a suitable habitat type; almost all pixels contain multiple habitats. In some scenarios, human 
settlements cover at least some of a pixel for most of the world, allowing synanthropic species to persist 
throughout most of their climatically-suitable range. For those with habitat data, the average reduction in 
range from habitat filtering was 7.6% of pixels. 

 
 
Predicting future species distributions 

 
We modeled a total of 136 future scenarios, produced by the four paired climate-land use change pathways 
replicated across nine global climate models (with one, GFDL-ESM4, only available for two climate 
scenarios: RCP 2.6 and RCP 7.0; see below), modified by two optional filters on species ranges (habitat 
preferences and dispersal limits). The full matrix of possible scenarios captures a combination of scenario 
uncertainty about global change and epistemological uncertainty about how best to predict species’ range 
shifts. By filtering potential future distributions based on climate, land use, and dispersal constraints, we 
aimed to maximize realism; our predictions were congruent with extensive prior literature on climate and 
land use-driven range loss.58,69,70 

 
 

Climate and land use futures 
 

We considered four possible scenarios for the year 2070 each based on a pairing of the Representative 
Concentration Pathways (RCPs) and the Shared Socioeconomic Pathways (SSPs). RCP numbers (e.g., 2.6 
or 4.5) represent Watts per square meter of additional radiative forcing by the end of the century, while 
SSPs describe alternate possible pathways of socioeconomic development and demographic change. As 
pairs, SSP-RCP scenarios describe alternative futures for global socioeconomic and environmental change. 
Not all SSP-RCP scenario combinations in the “scenario matrix” are realistically possible71. For example, 
in the vast majority of integrative assessment models, decarbonization cannot be achieved fast enough in 
the SSP5 scenario to achieve RCP 2.6. 

We used four SSP-RCP combinations: SSP1-RCP2.6, SSP2-RCP4.5, SSP3-RCP7.0, and SSP5-
RCP8.5. We selected these four scenarios because they span a wide range of plausible global change 
futures, and serve as the basis for climate model projections in the Scenario Model Intercomparison 
Project for the newest generation of global climate models (CMIP6)13. SSP1RCP2.6 is a scenario with 
low population growth, strong greenhouse gas mitigation and land use change (especially an increase in 
global forest cover), which makes global warming likely less than 2◦C above pre-industrial levels by ACCELE
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2100; SSP2-RCP4.5 has moderate land use change and greenhouse gas mitigation with global warming 
of around 2.5◦C by 2100; SSP3-RCP7.0 has high population growth, substantial land use change 
(especially a decrease in global forest cover) and very weak greenhouse gas mitigation efforts with 
global warming of around 4◦C by 2100; and SSP5-RCP8.5 is the highest warming scenario with less 
decrease in forest cover than SSP3 but more substantial increases in coal and other fossil fuel usage 
leading to more than 4◦C warming by 210013,72,73,74. 

 
 

Climate model uncertainty 
 

To identify the contribution of climate model uncertainty and its propagation through our analysis, we 
used all nine selected GCMs from CMIP6 and produced multi-model averages for all main text figures. 
For all of the main text statistics, we present each multi-model mean with a standard deviation across 
the nine global climate models. We also compared the first encounters from the two models with the 
highest (CanESM5) and lowest (MIROC6) effective climate sensitivity in the available CMIP6 set on 
WorldClim (ED Figure 5)49. We also present the map of first encounters and novel viral sharing in each 
GCM run for each RCP, accounting for both climate and land use change, with the full dispersal and 
limited dispersal scenario, in Supplemental Figures 3-20. 

 
 

Limiting dispersal capacity 
 

Not all species can disperse to all environments, and not all species have equal dispersal capacity, in ways 
likely to covary with viral sharing properties. We follow a rule proposed by Schloss et al.14, who described 
an approximate formula for mammal range shift capacity based on body mass and trophic position. For 
carnivores, the maximum distance traveled in a generation is given as D = 40.7M0.81, where D is distance 
in kilometers and M is body mass in kilograms. For herbivores and omnivores, the maximum is estimated 
as D = 3.31M0.65. 

We used mammalian diet data from the EltonTraits database75, and used the same cutoff as Schloss to 
identify carnivores as any species with 10% or less plants in their diet. We used body mass data from 
EltonTraits in the Schloss formula to estimate maximum generational dispersal, and converted estimates 
to annual maximum dispersal rates by dividing by generation length, as previously estimated by another 
comprehensive mammal dataset76. We multiply by 50 years (from 2020 as the present to 2070) and use the 
resulting distance as a buffer around the original range map, and constrain possible range shifts within that 
buffer. For 420 species with missing data in one of the required sources, we interpolated dispersal distance 
based on the closest relative in our supertree with a dispersal velocity estimate. 

Qualified by the downsides of assuming full dispersal77, we excluded bats from the assumed scaling of 
dispersal limitations. The original study by Schloss et al.14 chose to omit bats entirely, and subsequent work 
has not proposed any alternative formula. Moreover, the Schloss formula performs notably poorly for bats: 
for example, it would assign the largest bat in our study, the Indian flying fox (Pteropus giganteus), a 
dispersal capacity lower than that of the gray dwarf hamster (Cricetulus migratorius). Bats were instead 
given full dispersal in all scenarios: given significant evidence that some bat species regularly cover 
continental distances24,25, and that isolation by distance is uncommon within many bats’ ranges35, we felt 
this was a defensible assumption for modeling purposes. Moving forward, the rapid range shifts already 
observed in many bat species (see main text) could provide an empirical reference point to fit a new 
allometric scaling curve (after standardizing those results for the studies’ many different methodologies). 
A different set of functional traits likely govern the scaling of bat dispersal, chiefly the aspect ratio 
(length:width) of wings, which is a strong predictor of population genetic differentiation35. Migratory status 
would also be important to include as a predictor although here, we exclude information on long-distance 
migration for all species (due to a lack of any real framework for adding that information to species 
distribution models in the literature). 
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Explaining spatial patterns 
 

To explore the geography of novel assemblages, we used linear models that predicted the number of first 
encounters (novel overlap of species pairs) at the 25 km level (N = 258, 539 grid cells). Explanatory 
variables included: richness (number of species inhabiting the grid cell in our predicted current ranges for 
the given scenario); elevation in meters (derived from the US Geological Survey Global Multi-resolution 
Terrain Elevation Data 2010 dataset); and the predominant land cover type for the grid cell. We simplified 
the classification scheme for land use types into five categories for these models (human settlement, 
cropland, rangeland and pasture, forest, and unforested wildland), and assigned pixels a single land use 
type based on the maximum probability from the land use scenarios. We fit a model for each scenario and 
pair of biological assumptions; because of the large effect bats had on the overall pattern, we retrained 
these models on subsets of encounters with and without a bat species involved. To help model fitting, we 
log(x+1)-transformed the response variable (number of overlaps in the pixel) and both continuous 
explanatory variables (meters of elevation above the lowest point and species richness). Because some 
elevation values were lower than 0 (i.e., below sea level), we treated elevation as meters above the lowest 
terrestrial point rather than meters above sea level to allow us to log-transform the data. 

 
 
Viral sharing models 

 
Criteria for species’ inclusion 

 
Of the 3,870 species for which we generated distribution models, 103 were aquatic mammals (cetaceans, 
sirenians, pinnipeds, and sea otters), and 382 were not present in the mammalian supertree that we used for 
phylogenetic data78. These species, and the associated species distribution models, were excluded from the 
analysis. Aquatic species were removed using a two-filter approach, by first cross-referencing with 
Pantheria79, and second by checking no species only had non-aquatic habitat use types (see “Habitat range 
and land use”). We also excluded 246 monotremes and marsupials because the shape of the supertree 
prevented us from fitting satisfactory GAMM smooths to the phylogeny effect, leaving 3,139 non-marine 
placental mammals with associated phylogenetic data. 

 
 

Generalized additive mixed models 
 

We used a previously-published model of the phylogeography of viral sharing patterns to make predictions 
of future viral sharing10. This model was based on an analysis of 510 viruses shared between 682 mammal 
species2, and predicted the probability that a pair of mammal species will share a virus given their 
geographic range overlap and phylogenetic relatedness. The original study uncovered strong, nonlinear 
effects of spatial overlap and phylogenetic similarity in determining viral sharing probability, and 
simulating the unobserved global network using these effect estimates capitulated multiple 
macroecological patterns of viral sharing. 

In the original study, a Generalized Additive Mixed Model (GAMM) was used to predict virus sharing 
as a binary variable, based on (1) geographic range overlap; (2) phylogenetic similarity; and (3) species 
identity as a multi-membership random effect. The phylogeographic explanatory variables were obtained 
from two broadly available, low-resolution data sources: pairwise phylogenetic similarity was derived from 
a mammalian supertree previously modified for host-pathogen studies78,2, with similarity defined as the 
inverse of the cumulative branch length between two species, scaled to between 0 and 1. Geographic 
overlap was defined as the area of overlap between two species’ IUCN range maps, divided by their 
cumulative range size80. 

We first retrained the GAMMs from10 on the pairwise overlap matrix of species distribution models 
generated for this study, so that present predictions would be comparable with potential future distributions. 
Of the 3,139 species in our reduced dataset, 544 had viral records in our viral sharing dataset and shared ACCELE
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with at least one other mammal, and were used to retrain the GAMM from10. To check the performance of 
the GAMM, we predicted sharing patterns with a) only random effects, b) only fixed effects, and c) with 
both. To extend predictions to the the full set of mammals, we generated random effects for out-of-sample 
species by drawing from the fitted distribution of species-level effects. (Predicting without these random 
effects underestimates species variance, resulting in mean sharing of 0.02 rather than the observed 
0.06). The mean sharing value across these predictions closely approximated observed sharing probability 
(∼0.06). 

We note that this model uses citation counts to correct for sampling bias, an imperfect method but one 
that leads to strong validation performance on an independently-compiled dataset of host-virus 
associations, which carries a different set of biases. However, it is still possible that sampling bias in host-
virus datasets like the Olival et al. dataset could artificially inflate the signal of phylogeography in viral 
sharing, if researchers investigating a noteworthy viral detection then preferentially sample closely-related 
host species in the immediate area. It is unlikely these effects would bias our results in a particular direction, 
but accounting for these biases should at least involve some acknowledgement that cross-species 
transmission is challenging to predict. (See the Albery et al. study’s Discussion for a more in-depth 
treatment of sampling bias effects.) 

 
 

Model validation and limits 
 

Compared to the current viral sharing matrix, the model performs well with only fixed effects (AUC = 
0.80) and extremely well with both fixed and random effects (AUC = 0.93). The model explained a very 
similar proportion of the deviance in viral sharing to that in Albery et al.10 (44.5% and 44.8%, respectively). 

In practice, several unpredictable but confounding factors could affect the reliability of this model as a 
forecasting tool, including temperature sensitivity of viral evolution in host jumps41, or increased 
susceptibility of animals with poorer health in lower-quality habitat or unfavorable climates. Moreover, 
once viruses can produce an infection, their ability to transmit within a new species is an evolutionary race 
between mutation and recombination rates in viral genomes, host innate and adaptive immunity, virulence-
related mortality, and legacy constraints of coevolution with prior hosts and vectors81,82. But data 
cataloging these precise factors are hardly comprehensive for the hundreds of zoonotic viruses, let alone 
for the thousands of undescribed viruses in wildlife. Moreover, horizontal transmission is not necessary for 
spillover potential to be considered significant; for example, viruses like rabies or West Nile virus are not 
transmitted within human populations but humans are still noteworthy hosts. 

 
 

Mapping opportunities for sharing 
 

We used the GAMM effect estimates to predict viral sharing patterns across the 3,139 mammals with 
associated geographic range and phylogenetic data, for both the present and future scenarios. By comparing 
current and future sharing probabilities for each of the four global change scenarios, we estimated which 
geographic and taxonomic patterns of viral sharing would likely emerge. We separately examined patterns 
of richness, patterns of sharing probability, and their change (i.e., future sharing probability current sharing 
probability, giving the expected probability of a novel sharing event). 

A subset of the mammals in our dataset were predicted to encounter each other for the first time during 
range shifts. For each of these pairwise first encounters, we extracted the area of overlap in every future 
scenario, and assigned each overlap a probability of sharing from the mean GAMM predictions and mapped 
the mean and cumulative probability of a new sharing event happening in a given geographic pixel. 

 
 

Case study on Zaire ebolavirus 
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For a case study in possible significant cross-species transmission, we compiled a list of known hosts of 
Zaire ebolavirus (ZEBOV), a zoonosis with potentially high host breadth that has been known to cause 
wildlife die-offs, but has no known definitive reservoir. Hosts were taken from two sources: the training 
dataset on host-virus associations2, and an additional dataset of filovirus testing in bats62. In the latter case, 
any bats that have been reported antibody positive or PCR-positive for ZEBOV were included. A total of 
19 current “known hosts” were selected. We restricted our analysis to the 13 hosts from Africa, because 
there is no conclusive evidence that Zaire ebolavirus actively circulates outside Africa; although some bat 
species outside Africa have tested positive for antibodies to ZEBOV, this is likely due to cross-reactivity 
with other undiscovered filoviruses83,84,62. We used the 13 African hosts to predict possible first encounters 
in all scenarios (Figure 8), and mapped the current richness of ZEBOV hosts, the change in host richness 
by 2070, and the number of first encounters (Figure 3). 

 
 

Overlap with human populations 
 

To examine the possibility that hotspots of cross-species transmission would overlap with human 
populations, we used SEDAC’s global population projections version 1.0 for the year 207059. We 
aggregated these to native resolution, for each of the four SSP paired with the native RCP/SSP pairing for 
the species distribution models. In Figure 4 we present the population projections for SSP1, which pairs 
with RCP 2.6. 

 
 
Timing of opportunity 

 
As a final supplementary analysis, we explored the potential timing of first encounters throughout a century 
of species’ movements. To do so, we reproduced our entire modeling pipeline with CHELSA v2.1, a 
climate product for CMIP6 with five general circulation models (GFDLESM4, IPSL-CM6A-LR, MPI-
ESM1-2-HR, MRI-ESM2-0, and UKESM1-0-LL) projected in three scenarios (SSP1-RCP2.6, SSP3-
RCP7.0, and SSP5-RCP8.5) and averaged in four time slices (1981-2010, 2011-2040, 2041-2070, and 
2071-2100). Given the focus on timing, species occurrence records were filtered to span the years 1900 to 
2019; this allowed us to build 2,948 point process models and 903 range bagging models (3,850 models) 
for this analysis. We treated the first time interval as the “baseline” for species distribution models, and 
projected species distributions into each of those three “future” intervals; we then identified the first 
encounters in each time interval as a cumulative process (e.g., two species that meet in 2011-2040 for the 
first time cannot also have a first encounter in 2041-2070). 
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Extended Data Figures (Captions) 
 

Extended Data Figure 1: The mammal-virus network. The present-day viral sharing network by mammal 
order inferred from modeled pairwise predictions of viral sharing probabilities. Edge width denotes the 
expected number of shared viruses (the sum of pairwise species-species viral sharing probabilities), with 
most sharing existing among the most speciose and closelyrelated groups. Edges shown in the network are 
the top 25% of links. Nodes are sized by total number of species in that order in the host-virus association 
dataset, color is scaled by degree. Silhouettes are from http://phylopic.org under Creative Commons license 
(creativecommons.org/licenses/by/3.0). 
 
Extended Data Figure 2: Predicted phylogeographic structure of viral sharing. Phylogeographic 
prediction of viral sharing using a generalized additive mixed model. Viral sharing increases as a function 
of phylogenetic similarity (upper left) and geographic overlap (upper right), which have strong nonlinear 
interactions, shown in the contour map of joint effects (bottom left). Error bars are the 95% confidence 
interval for the estimated response. White contour lines denote 10% increments of sharing probability. 
Declines at high values of overlap may be an artefact of model structure and low sampling in the upper 
levels of geographic overlap, shown in a hexagonal bin chart of the raw data distribution (bottom right).  

 
Extended Data Figure 3: Outcomes by model formulation and climate change scenario. Heatmaps 
displaying predicted changes across model formulations. (A) Range expansions were highest in non-
dispersal-limited scenarios and in scenarios with lower levels of global warming. (B) The number of 
predicted first encounters was higher in non-dispersal-limited scenarios and in scenarios with lower levels 
of global warming. (C) The number of expected new viral sharing events was higher in non-dispersal-
limited scenarios and in more severe RCPs. (D) The overall change in sharing probability (connectance) 
across the viral sharing network between the present day and the future scenarios; absolute changes may 
appear small, but an 0.4% increase in connectivity is notable on the scale of millions of possible pairwise 
combinations of species. Change is positive across all scenarios, being greatest in non-dispersal-limited 
scenarios and in scenarios with lower levels of global warming. Results are averaged across nine global 
climate models, with standard deviation indicated in parentheses underneath main statistics. 

 
Extended Data Figure 4: Geographic distribution of first encounters. Predictions were carried out for 
four representative concentration pathways (RCPs), accounting for climate change and land use change, 
without (left) and with dispersal limits (right). Darker colours correspond to greater numbers of first 
encounters in the pixel. Results are averaged across nine global climate models. 

 
Extended Data Figure 5: Geographic distribution of first encounters in two global climate models. 
Predictions were carried out for four representative concentration pathways (RCPs), accounting for climate 
change and land use change through pairing with shared socioeconomic pathways (SSPs) as detailed in the 
Methods. The two models selected are those with the highest (CanESM5) and lowest (MIROC6) effective 
climate sensitivity in the available CMIP6 set on WorldClim49. Darker colours correspond to greater 
numbers of first encounters in the pixel. 

 
Extended Data Figure 6: Geographic distribution of expected viral sharing events from first 
encounters. Predictions were carried out for potential future distributions for four representative 
concentration pathways (RCPs), accounting for climate change and land use change, without (left) and 
with dispersal limits (right). Darker colours correspond to greater numbers of new viral sharing events in 
the pixel. Probability of new viral sharing was calculated by subtracting the species pair’s present sharing 
probability from their future sharing probability that our viral sharing GAMMs predicted. This probability ACCELE
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was projected across the species pair’s range intersection, and then summed across all novel species pairs 
in each pixel. Results are averaged across nine global climate models. 
 
Extended Data Figure 7: Order-level heterogeneity in first encounters. Dispersal stratifies the number 
of first encounters (RCP 2.6 with all range filters), where some orders have more than expected at random, 
based on the mean number of first encounters and order size (line). Results are averaged across nine global 
climate models. 

 
Extended Data Figure 8: Projected viral sharing from suspected Ebola reservoirs is dominated by 
bats. Node size is proportional to (left) the number of suspected Ebola host species in each order, which 
connect to (middle) first encounters with potentially naive host species; and (right) the number of projected 
viral sharing events in each receiving group. (Node size denotes proportions out of 100% within each 
column total.) While Ebola hosts will encounter a much wider taxonomic range of mammal groups than 
current reservoirs, the vast majority of future viral sharing will occur disproportionately in bats. (First 
encounters are averaged across GCMs to capture the maximum range of taxonomic diversity.) Silhouettes 
are from http://phylopic.org under Creative Commons license (creativecommons.org/licenses/by/3.0). 

 
Extended Data Figure 9: Geographic distribution of first encounters over time without dispersal 
restrictions. We show the RCP with the least mitigation (RCP 2.6) and most mitigation (RCP 8.5). 
Projections are made based on future climate and land use. Years are the start of each interval (2011-2040; 
2041-2070; 2071-2100). Darker colours correspond to greater numbers of first encounters in the pixel. 
Results are averaged across five global climate models from CHELSA v2.1. 

 
Extended Data Figure 10: Geographic distribution of first encounters over time with dispersal 
restrictions. We show the RCP with the least mitigation (RCP 2.6) and most mitigation (RCP 
8.5). Projections are made based on future climate and land use. Years are the start of each interval (2011-
2040; 2041-2070; 2071-2100). Darker colours correspond to greater numbers of first encounters in the 
pixel. Results are averaged across five global climate models from CHELSA v2.1. 

  

ACCELE
RATED ARTIC

LE
 PREVIEW



  

 
 
Acknowledgements 

 
This paper is the culmination of several years of idea development and owes special thanks to many people, 
including the entire Bansal Lab, Laura Ward Alexander, Kevin Burgio, Eric Dougherty, Romain Garnier, 
Wayne Getz, Peta Hitchens, Christine Johnson, and Isabel Ott. We especially thank Laura Alexander for 
sharing bat filovirus testing sources used to compile the Ebola sub-network. Thanks are also extended to 
José Hidasi-Neto for publicly-available data visualization code. CJC was supported by the Georgetown 
Environment Initiative and the National Socio-Environmental Synthesis Center (SESYNC) under funding 
received from the National Science Foundation DBI-1639145. CJC, GFA, and EAE were supported by 
funding to the Verena Consortium including NSF BII 2021909 and a grant from Institut de Valorisation 
des Données (IVADO). CM acknowledges funding from National Science Foundation grant DBI-1913673. 
EAE, KJO, and NR were supported by the United States Agency for International Development (USAID) 
Emerging Pandemic Threats PREDICT project. 

 
 
Author Contributions 

 
CJC and GFA conceived the study. CM, CJC, and CHT developed species distribution models; GFA, EAE, 
KJO, and NR developed the generalized additive models. GFA, CJC, and CMZ integrated the predictions 
of species distributions and viral sharing patterns and designed visualizations. All authors contributed to 
the writing of the manuscript. 

 
 
Competing Interests 

 
The authors declare no competing interests.

ACCELE
RATED ARTIC

LE
 PREVIEW



  

 
 
Code Availability 

 
Code to reproduce the study is deposited on Zenodo (DOI:10.5281/zenodo.6463429) and available in a 
Github repository (github.com/viralemergence/iceberg). Additional code to generate the generalized 
additive mixed models used in this study, reused from the Albery et al. study, are also available in a Github 
repository (github.com/gfalbery/ViralSharingPhylogeography). 

 
 
Data Availability 

 
No original data is used in, generated by, or produced by our study. All raw datasets are available online, 
including the GBIF database of biodiversity occurrence data (URL: gbif.org), the IUCN Red List (URL: 
iucnredlist.org), the WorldClim climate dataset (URL worldclim.org; DOI: 10.1002/joc.5086), the 
CHELSA climate dataset (URL: chelsa-climate.org/cmip6; DOI: 10.1038/sdata.2017.122), the LUH2 land 
use dataset (URL: luh.umd.edu; DOI: 10.5194/gmd-13-5425-2020), the USGS GMTED 2010 elevation 
dataset (URL: usgs.gov/coastal-changes-andimpacts/gmted2010), the HP3 dataset of host-virus 
assocations (URL: github.com/ecohealthalliance/HP3; DOI: 10.5281/zenodo.596810), and a dataset of 
filovirus testing in bats62.

ACCELE
RATED ARTIC

LE
 PREVIEW



  

 
 
References, continued 

 
50. Data from: Olival, K. J, Hosseini, P. R, Zambrana-Torrelio, C, Ross, N, Bogich, T. L, & Daszak, P. 

(2017) Host and viral traits predict zoonotic spillover from mammals. Nature 546, 646–650. 
 

51. Becker, D, Albery, G. F, Sjodin, A. R, Poisot, T, Dallas, T, Eskew, E. A, Farrell, M. J, Guth, S, Han, 
B. A, Simmons, N. B, et al. (2020) Predicting wildlife hosts of betacoronaviruses for sars-cov-2 
sampling prioritization. bioRxiv. 

 
52. Washburne, A. D, Crowley, D. E, Becker, D. J, Olival, K. J, Taylor, M, Munster, V. J, & Plowright, R. 

K. (2018) Taxonomic patterns in the zoonotic potential of mammalian viruses. PeerJ 6, e5979. 

53. Grubbs, F. E et al. (1950) Sample criteria for testing outlying observations. The Annals of 
Mathematical Statistics 21, 27–58. 

 
54. Fick, S. E & Hijmans, R. J. (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for 

global land areas. International Journal of Climatology 37, 4302–4315. 
 

55. Hurtt, G, Chini, L, Sahajpal, R, Frolking, S, Bodirsky, B, Calvin, K, Doelman, J, Fisk, J, Fujimori, S, 
Goldewijk, K, et al. (2018) LUH2: Harmonization of global land-use scenarios for the period 850-
2100. 

 
56. Navarro-Racines, C, Tarapues, J, Thornton, P, Jarvis, A, & Ramirez-Villegas, J. (2020) Highresolution 

and bias-corrected cmip5 projections for climate change impact assessments. Scientific data 7, 1–14. 
 

57. Hurtt, G. C, Chini, L. P, Frolking, S, Betts, R. A, Feddema, J, Fischer, G, Fisk, J. P, Hibbard, K, 
Houghton, R. A, Janetos, A, Jones, C. D, Kindermann, G, Kinoshita, T, Klein Goldewijk, K, Riahi, K, 
Shevliakova, E, Smith, S, Stehfest, E, Thomson, A, Thornton, P, van Vuuren, D. P, 
& Wang, Y. P. (2011) Harmonization of land-use scenarios for the period 1500–2100: 600 years of 
global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Climatic 
Change 109, 117–161. 

 
58. Powers, R. P & Jetz, W. (2019) Global habitat loss and extinction risk of terrestrial vertebrates under 

future land-use-change scenarios. Nature Climate Change 9, 323. 
 

59. Gao, J. (2017) Downscaling global spatial population projections from 1/8-degree to 1-km grid cells, 
(NCAR technical note NCAR/TN-537+ STR. Boulder, Colorado: National Center for Atmospheric 
Research), Technical report. 

 
60. Jones, B & O’Neill, B. C. (2016) Spatially explicit global population scenarios consistent with the 

shared socioeconomic pathways. Environmental Research Letters 11, 084003. 
 

61. IUCN Red List. (2019) The iucn red list of threatened species. International Union for Conservation of 
Nature and Natural Resources. Online at: http://www. iucnredlist.org/. 

 
62. Han, B. A, Schmidt, J. P, Alexander, L. W, Bowden, S. E, Hayman, D. T, & Drake, J. M. (2016) 

Undiscovered bat hosts of filoviruses. PLoS Neglected Tropical Diseases 10, e0004815. 
 

63. Renner, I. W, Elith, J, Baddeley, A, Fithian, W, Hastie, T, Phillips, S. J, Popovic, G, & Warton, D. I. 
(2015) Point process models for presence-only analysis. Methods in Ecology and Evolution 
6, 366–379. 

 ACCELE
RATED ARTIC

LE
 PREVIEW



  

64. Friedman, J, Hastie, T, & Tibshirani, R. (2010) Regularization paths for generalized linear models via 
coordinate descent. Journal of Statistical Software 33, 1. 

 
65. Phillips, S. J, Anderson, R. P, & Schapire, R. E. (2006) Maximum entropy modeling of species 

geographic distributions. Ecological Modelling 190, 231–259. 
 

66. Hastie, T, Tibshirani, R, & Friedman, J. H. (2009) The elements of statistical learning: data mining, 
inference, and prediction. (Springer-Verlag, New York), 2nd edition. 

67. Drake, J. M. (2015) Range bagging: a new method for ecological niche modelling from presence-only 
data. Journal of The Royal Society Interface 12, 20150086–9. 

 
68. Drake, J. M & Richards, R. L. (2018) Estimating environmental suitability. Ecosphere 9, e02373. 

 
69. Jetz, W, Wilcove, D. S, & Dobson, A. P. (2007) Projected impacts of climate and land-use change on 

the global diversity of birds. PLoS Biology 5, e157. 
 

70. Pecl, G. T, Araújo, M. B, Bell, J. D, Blanchard, J, Bonebrake, T. C, Chen, I.-C, Clark, T. D, Colwell, 
R. K, Danielsen, F, Evengård, B, et al. (2017) Biodiversity redistribution under climate change: 
Impacts on ecosystems and human well-being. Science 355, eaai9214. 

 
71. van Vuuren, D. P, Riahi, K, Calvin, K, Dellink, R, Emmerling, J, Fujimori, S, Kc, S, Kriegler, E, & 

O’Neill, B. (2017) The Shared Socio-economic Pathways: Trajectories for human development and 
global environmental change. Global Environmental Change 42, 148–152. 

 
72. Riahi, K, van Vuuren, D. P, Kriegler, E, Edmonds, J, O’Neill, B. C, Fujimori, S, Bauer, N, Calvin, K, 

Dellink, R, Fricko, O, Lutz, W, Popp, A, Cuaresma, J. C, Kc, S, Leimbach, M, Jiang, L, Kram, T, Rao, 
S, Emmerling, J, Ebi, K, Hasegawa, T, Havlik, P, Humpenöder, F, Da Silva, L. A, Smith, S, Stehfest, 
E, Bosetti, V, Eom, J, Gernaat, D, Masui, T, Rogelj, J, Strefler, J, Drouet, L, Krey, V, Luderer, G, 
Harmsen, M, Takahashi, K, Baumstark, L, Doelman, J. C, Kainuma, M, Klimont, Z, Marangoni, G, 
Lotze-Campen, H, Obersteiner, M, Tabeau, A, & Tavoni, M. (2017) The Shared Socioeconomic 
Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global 
Environmental Change 42, 153– 
168. 

 
73. Popp, A, Calvin, K, Fujimori, S, Havlik, P, Humpenöder, F, Stehfest, E, Bodirsky, B. L, Dietrich, J. P, 

Doelmann, J. C, Gusti, M, Hasegawa, T, Kyle, P, Obersteiner, M, Tabeau, A, Takahashi, K, Valin, H, 
Waldhoff, S, Weindl, I, Wise, M, Kriegler, E, Lotze-Campen, H, Fricko, O, Riahi, K, & Vuuren, D. 
P. v. (2017) Land-use futures in the shared socio-economic pathways. Global Environmental Change 
42, 331–345. 

 
74. Samir, K & Lutz, W. (2017) The human core of the shared socioeconomic pathways: Population 

scenarios by age, sex and level of education for all countries to 2100. Global Environmental Change 
42, 181–192. 

 
75. Wilman, H, Belmaker, J, Simpson, J, de la Rosa, C, Rivadeneira, M. M, & Jetz, W. (2014) Eltontraits 

1.0: Species-level foraging attributes of the world’s birds and mammals: Ecological archives e095-
178. Ecology 95, 2027–2027. 

 
76. Pacifici, M, Santini, L, Di Marco, M, Baisero, D, Francucci, L, Marasini, G. G, Visconti, P, & 

Rondinini, C. (2013) Generation length for mammals. Nature Conservation 5, 89. 
 

ACCELE
RATED ARTIC

LE
 PREVIEW



  

77. Bateman, B. L, Murphy, H. T, Reside, A. E, Mokany, K, & VanDerWal, J. (2013) Appropriateness of 
full-, partial-and no-dispersal scenarios in climate change impact modelling. Diversity and 
Distributions 19, 1224–1234. 

78. Fritz, S. A, Bininda-Emonds, O. R, & Purvis, A. (2009) Geographical variation in predictors of 
mammalian extinction risk: big is bad, but only in the tropics. Ecology Letters 12, 538–549. 

 
79. Jones, K. E, Bielby, J, Cardillo, M, Fritz, S. A, O’Dell, J, Orme, C. D. L, Safi, K, Sechrest, W, Boakes, 

E. H, Carbone, C, et al. (2009) PanTHERIA: a species-level database of life history, ecology, and 
geography of extant and recently extinct mammals: Ecological Archives E090- 
184. Ecology 90, 2648–2648. 

 
80. Araújo, M. B, Rozenfeld, A, Rahbek, C, & Marquet, P. A. (2011) Using species co-occurrence networks 

to assess the impacts of climate change. Ecography 34, 897–908. 
 

81. Geoghegan, J. L, Senior, A. M, Di Giallonardo, F, & Holmes, E. C. (2016) Virological factors that 
increase the transmissibility of emerging human viruses. Proceedings of the National Academy of 
Sciences 113, 4170–4175. 

 
82. Walker, J. W, Han, B. A, Ott, I. M, & Drake, J. M. (2018) Transmissibility of emerging viral zoonoses. 

PloS One 13, e0206926. 
 

83. Olival, K. J, Islam, A, Yu, M, Anthony, S. J, Epstein, J. H, Khan, S. A, Khan, S. U, Crameri, G, Wang, 
L.-F, Lipkin, W. I, et al. (2013) Ebola virus antibodies in fruit bats, Bangladesh. Emerging Infectious 
Diseases 19, 270. 

 
84. Yang, X.-L, Zhang, Y.-Z, Jiang, R.-D, Guo, H, Zhang, W, Li, B, Wang, N, Wang, L, Waruhiu, C, 

Zhou, J.-H, et al. (2017) Genetically diverse filoviruses in Rousettus and Eonycteris spp. bats, China, 
2009 and 2015. Emerging Infectious Diseases 23, 482. 

ACCELE
RATED ARTIC

LE
 PREVIEW



0

200

400

600

800

1000

1200

1400

V
ira

l s
ha

rin
g 

ev
en

ts

0

100

200

300

400

500

600

700

V
ira

l s
ha

rin
g 

ev
en

ts

ACCELE
RATED ARTIC

LE
 PREVIEW



0

1000

2000

3000

4000

Fi
rs

t e
nc

ou
nt

er
s

0

50

100

150

Fi
rs

t e
nc

ou
nt

er
s

Bat encounters Non-bat encounters

RCP 2.6 (CL)
RCP 2.6 (CLD)
RCP 8.5 (CL)
RCP 8.5 (CLD)

Scenario

RCP 2.6 (CL)
RCP 2.6 (CLD)
RCP 8.5 (CL)
RCP 8.5 (CLD)

Scenario

RCP 2.6 (CL)
RCP 2.6 (CLD)
RCP 8.5 (CL)
RCP 8.5 (CLD)

Scenario

Pr
ed

ic
te

d 
en

co
un

te
rs

Pr
ed

ic
te

d 
en

co
un

te
rs

Elevation

Richness

Effect size

La
nd

 u
se

 

1e+05
10000
1000
100
10
1

1e+05

1000

10

0.1

1+e07

Crop

Settled

Range

Forest

Other

1 10 100 1000 1 10 100 1000

1 10 100 1 10 100

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

A

B

C

D

E

ACCELE
RATED ARTIC

LE
 PREVIEW



0

2

4

6

8

10

12

Sp
ec

ie
s

−2

0

2

4

6

8

∆
Sp

ec
ie

s

0

50

100

150

Fi
rs

t e
nc

ou
nt

er
s

0

2

4

6

8

10

12

14

Vi
ra

l s
ha

rin
g 

ev
en

ts

A B                                C

D

ACCELE
RATED ARTIC

LE
 PREVIEW



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Viral sharing

Po
pu

la
tio

n 
de

ns
ity

ACCELE
RATED ARTIC

LE
 PREVIEW



CL CLD

C CD

20
20

20
40

20
60

20
20

20
40

20
60

20
20

20
40

20
60

20
20

20
40

20
60

160000

170000

180000

190000

140000

150000

160000

430000

440000

450000

390000

400000

410000

420000

Year

E
nc

ou
nt

er
s RCP

26
70
85

ACCELE
RATED ARTIC

LE
 PREVIEW



Extended Data Fig. 1 The mammal-virus network. The present-day viral sharing network by mammal 
order inferred from modeled pairwise predictions of viral sharing probabilities. Edge width denotes the 
expected number of shared viruses (the sum of pairwise species-species viral sharing probabilities), with 
most sharing existing among the most speciose and closelyrelated groups. Edges shown in the network are 
the top 25% of links. Nodes are sized by total number of species in that order in the host-virus association 
dataset, color is scaled by degree. Silhouettes are from http://phylopic.org under Creative Commons license 
(creativecommons.org/licenses/by/3.0).
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Extended Data Fig. 2 Predicted phylogeographic structure of viral sharing. Phylogeographic 
prediction of viral sharing using a generalized additive mixed model. Viral sharing increases as a function 
of phylogenetic similarity (upper left) and geographic overlap (upper right), which have strong nonlinear 
interactions, shown in the contour map of joint effects (bottom left). Error bars are the 95% confidence 
interval for the estimated response. White contour lines denote 10% increments of sharing probability. 
Declines at high values of overlap may be an artefact of model structure and low sampling in the upper levels 
of geographic overlap, shown in a hexagonal bin chart of the raw data distribution (bottom right). 
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Extended Data Fig. 3 Outcomes by model formulation and climate change scenario. Heatmaps 
displaying predicted changes across model formulations. (A) Range expansions were highest in non-
dispersal-limited scenarios and in scenarios with lower levels of global warming. (B) The number of 
predicted first encounters was higher in non-dispersal-limited scenarios and in scenarios with lower levels of 
global warming. (C) The number of expected new viral sharing events was higher in non-dispersal-limited 
scenarios and in more severe RCPs. (D) The overall change in sharing probability (connectance) across the 
viral sharing network between the present day and the future scenarios; absolute changes may appear small, 
but an 0.4% increase in connectivity is notable on the scale of millions of possible pairwise combinations 
of species. Change is positive across all scenarios, being greatest in non-dispersal-limited scenarios and in 
scenarios with lower levels of global warming. Results are averaged across nine global climate models, with 
standard deviation indicated in parentheses underneath main statistics.
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Extended Data Fig. 4 Geographic distribution of first encounters. Predictions were carried out for four 
representative concentration pathways (RCPs), accounting for climate change and land use change, without 
(left) and with dispersal limits (right). Darker colours correspond to greater numbers of first encounters in 
the pixel. Results are averaged across nine global climate models.
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Extended Data Fig. 5 Geographic distribution of first encounters in two global climate models. 
Predictions were carried out for four representative concentration pathways (RCPs), accounting for climate 
change and land use change through pairing with shared socioeconomic pathways (SSPs) as detailed in the 
Methods. The two models selected are those with the highest (CanESM5) and lowest (MIROC6) effective 
climate sensitivity in the available CMIP6 set on WorldClim49. Darker colours correspond to greater numbers 
of first encounters in the pixel.
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Extended Data Fig. 6 Geographic distribution of expected viral sharing events from first encounters. 
Predictions were carried out for potential future distributions for four representative concentration pathways 
(RCPs), accounting for climate change and land use change, without (left) and with dispersal limits (right). 
Darker colours correspond to greater numbers of new viral sharing events in the pixel. Probability of new 
viral sharing was calculated by subtracting the species pair’s present sharing probability from their future 
sharing probability that our viral sharing GAMMs predicted. This probability was projected across the 
species pair’s range intersection, and then summed across all novel species pairs in each pixel. Results are 
averaged across nine global climate models.
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Extended Data Fig. 7 Order-level heterogeneity in first encounters. Dispersal stratifies the number of first 
encounters (RCP 2.6 with all range filters), where some orders have more than expected at random, based 
on the mean number of first encounters and order size (line). Results are averaged across nine global climate 
models.
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Extended Data Fig. 8 Projected viral sharing from suspected Ebola reservoirs is dominated by bats. 
Node size is proportional to (left) the number of suspected Ebola host species in each order, which connect 
to (middle) first encounters with potentially naive host species; and (right) the number of projected viral 
sharing events in each receiving group. (Node size denotes proportions out of 100% within each column 
total.) While Ebola hosts will encounter a much wider taxonomic range of mammal groups than current 
reservoirs, the vast majority of future viral sharing will occur disproportionately in bats. (First encounters are 
averaged across GCMs to capture the maximum range of taxonomic diversity.) Silhouettes are from http://
phylopic.org under Creative Commons license (creativecommons.org/licenses/by/3.0).
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Extended Data Fig. 9 Geographic distribution of first encounters over time without dispersal 
restrictions. We show the RCP with the least mitigation (RCP 2.6) and most mitigation (RCP 8.5). 
Projections are made based on future climate and land use. Years are the start of each interval (2011-2040; 
2041-2070; 2071-2100). Darker colours correspond to greater numbers of first encounters in the pixel. 
Results are averaged across five global climate models from CHELSA v2.1.
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Extended Data Fig. 10 Geographic distribution of first encounters over time with dispersal 
restrictions. We show the RCP with the least mitigation (RCP 2.6) and most mitigation (RCP 8.5). 
Projections are made based on future climate and land use. Years are the start of each interval (2011-2040; 
2041-2070; 2071-2100). Darker colours correspond to greater numbers of first encounters in the pixel. 
Results are averaged across five global climate models from CHELSA v2.1.
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