Skip to main content

Advertisement

Log in

An Insight into Plant Growth-Promoting Rhizobacteria-Mediated Mitigation of Stresses in Plant

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Plant growth-promoting rhizobacteria (PGPR) play a vital role in alleviating biotic and abiotic stresses in plants. They enable plant growth under adverse circumstances and help improving the yield through several direct or indirect mechanisms. With the aid of PGPR, plant can fix atmospheric nitrogen, produce phytohormones, enhance water and nutrient uptake, solubilize phosphate, and improve the provision of binding iron with the help of siderophores. PGPR-induced indirect mechanisms help plant to suppress parasitism by some deleterious rhizobacteria through induced systemic resistance, antibiosis, competition for nutrients, and production of metabolites. Thus, application of PGPR is a sustainable approach to reduce the use of chemical fertilizers in crop field. Bio-fertilizers containing PGPR have great economic prospect and potential for environmental benefits. This review highlights the various roles of PGPR in promoting growth and development of plant in a stressful environment. The study also encompasses the successful application of PGPR strains for nitrogen fixation, management of nutrients, water and salt stresses, controlling plant insects, and phytopathogens. Furthermore, recent know-how on the underlying mechanisms of PGPR-induced systemic resistance in plants will be helpful to investigate their additional uses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdalla OA, Bibi S, Zhang S (2017) Application of plant growth-promoting rhizobacteria to control Papaya ringspot virus and Tomato chlorotic spot virus. Arch Phytopathol Plant Protect 50(11–12):584–597

    Google Scholar 

  • Abdelkhalek A, Behiry SI, Al-Askar AA (2020) Bacillus velezensis PEA1 inhibits Fusarium oxysporum growth and induces systemic resistance to cucumber mosaic virus. Agronomy 10(9):1312

    CAS  Google Scholar 

  • Aeron A, Khare E, Jha CK, Meena VS, Aziz SM, Islam MT, Kim K, Meena SK, Pattanayak A, Rajashekara H, Dubey RC (2020) Revisiting the plant growth-promoting rhizobacteria: lessons from the past and objectives for the future. Arch Microbiol 202(4):665–676

    CAS  PubMed  Google Scholar 

  • Ahemad M, Kibret M (2013) Recent trends in microbial biosorption of heavy metals: a review. Biochem Mol Biol Educ 1(1):19–26

    Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26(1):1–20

    Google Scholar 

  • Ahmad M, Naseer I, Hussain A, Zahid Mumtaz M, Mustafa A, Hilger TH, Minggang X (2019) Appraising endophyte–plant symbiosis for improved growth, nodulation, nitrogen fixation and abiotic stress tolerance: an experimental investigation with chickpea (Cicer arietinum L.). Agronomy 9(10):621

    CAS  Google Scholar 

  • Ahmad HT, Hussain A, Aimen A, Jamshaid MU, Ditta A, Asghar HN, Zahir ZA (2021) Improving resilience against drought stress among crop plants through inoculation of plant growth-promoting rhizobacteria. In: Husen A, Jawaid M (eds) Harsh environment and plant resilience: molecular and functional aspects, 1st edn. Springer, New York, pp 387–408

    Google Scholar 

  • Ahmed A, Hasnain S (2010) Auxin-producing Bacillus sp.: auxin quantification and effect on the growth of Solanum tuberosum. Pure Appl Chem 82(1):313–319

    CAS  Google Scholar 

  • Alami Y, Achouak W, Marol C, Heulin T (2000) Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing Rhizobium sp. strain isolated from sunflower roots. Appl Environ Microbiol 66(8):3393–3398

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alexander A, Singh VK, Mishra A (2020) Halotolerant PGPR Stenotrophomonas maltophilia BJ01 induces salt tolerance by modulating physiology and biochemical activities of Arachis hypogaea. Front Microbiol 11:2530

    Google Scholar 

  • Ali S, Khan MA, Kim WC (2018) Pseudomonas veronii KJ mitigates flood stress-associated damage in Sesamum indicum L. Appl Biol Chem 61(5):575–585

    CAS  Google Scholar 

  • Ali M, Lamin-Samu AT, Muhammad I, Farghal M, Khattak AM, Jan I, Haq SU, Khan A, Gong ZH, Lu G (2021) Melatonin mitigates the infection of Colletotrichum gloeosporioides via modulation of the chitinase gene and antioxidant activity in Capsicum annuum L. Antioxidants 10:1–25

    CAS  Google Scholar 

  • ALKahtani MD, Attia KA, Hafez YM, Khan N, Eid AM, Ali MA, Abdelaal KA (2020) Chlorophyll fluorescence parameters and antioxidant defense system can display salt tolerance of salt acclimated sweet pepper plants treated with chitosan and plant growth promoting rhizobacteria. Agronomy 10(8):1180

    CAS  Google Scholar 

  • Altaf MA, Shahid R, Ren MX, Khan LU, Altaf MM, Jahan MS, Nawaz MA, Naz S, Shahid S, Lal MK, Tiwari RK (2021) Protective mechanisms of melatonin against vanadium phytotoxicity in tomato seedlings: insights into nutritional status, photosynthesis, root architecture system, and antioxidant machinery. J Plant Growth Regul. https://doi.org/10.1007/s00344-021-10513-0

    Article  Google Scholar 

  • Ansari MF, Tipre DR, Dave SR (2015) Efficiency evaluation of commercial liquid biofertilizers for growth of Cicer aeritinum (chickpea) in pot and field study. Biocatal Agric Biotechnol 4(1):17–24

    Google Scholar 

  • Apse MP, Blumwald E (2002) Engineering salt tolerance in plants. Curr Opin Biotechnol 13:146–150

    CAS  PubMed  Google Scholar 

  • Araújo AS, Leite LF, Santos VB, Carneiro RF (2009) Soil microbial activity in conventional and organic agricultural systems. Sustainability 1(2):268–276

    Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2019) Melatonin and reactive oxygen and nitrogen species: a modelfor the plant redox network. Melatonin Res 2(3):152–168

    Google Scholar 

  • Asad SA, Muhammad S, Farooq M, Afzal A, Broadley M, Young S, West H (2015a) Anthocyanin production in the hyperaccumulator plant Noccaea caerulescens in response to herbivory and zinc stress. Acta Physiol Plant 37(1):1–9

    CAS  Google Scholar 

  • Asad SA, Young SD, West HM (2015b) Effect of zinc and glucosinolates on nutritional quality of Noccaea caerulescens and infestation by Aleyrodes proletella. Sci Total Environ 511:21–27

    CAS  PubMed  Google Scholar 

  • Asad SA, Rafiq A, Muhammad S (2018) Heavy metals and glucosinolates based defence mechanisms in metal accumulating plants and counter adaptations by insect herbivores: a review. Int J Agric Biol 20(4):811–820

    CAS  Google Scholar 

  • Ashrafuzzaman M, Hossen FA, Ismail MR, Hoque A, Islam MZ, Shahidullah S, Meon S (2009) Efficiency of plant growth-promoting rhizobacteria (PGPR) for the enhancement of rice growth. Afr J Biotechnol 8(7)

  • Asif M, Pervez A, Ahmad R (2019) Role of melatonin and plant-growth-promoting rhizobacteria in the growth and development of plants. Clean (weinh) 47(6):1800459

    Google Scholar 

  • Ayangbenro AS, Babalola OO (2017) A new strategy for heavy metal polluted environments: a review of microbial biosorbents. Int J Environ Res Public Health 14(1):94

    PubMed  PubMed Central  Google Scholar 

  • Babalola OO (2010) Beneficial bacteria of agricultural importance. Biotechnol Lett 32(11):1559–1570

    CAS  PubMed  Google Scholar 

  • Baharlouei J, Pazira E, Solhi M (2011) Evaluation of inoculation of plant growth-promoting Rhizobacteria on cadmium uptake by canola and barley. In: Proceedings of the 2nd International Conference on Environmental Science and Technology

  • Bailey-Serres J, Voesenek L (2008) Flooding stress: acclimations and genetic diversity. Annu Rev Plant Biol 59:313–339

    CAS  PubMed  Google Scholar 

  • Baldani J, Caruso L, Baldani VL, Goi SR, Döbereiner J (1997) Recent advances in BNF with non-legume plants. Soil Biol Biochem 29(5–6):911–922

    CAS  Google Scholar 

  • Baldani JI, Reis VM, Baldani VL, Döbereiner J (2002) A brief story of nitrogen fixation in sugarcane—reasons for success in Brazil. Funct Plant Biol 29(4):417–423

    PubMed  Google Scholar 

  • Balla K, Rakszegi M, Li Z, Bekes F, Bencze S, Veisz O (2011) Quality of winter wheat in relation to heat and drought shock after anthesis. Czech J Food Sci 29(2):117–128

    CAS  Google Scholar 

  • Bankole S, Adebanjo A (1998) Efficacy of some fungal and bacterial isolates in controlling wet rot disease of cowpea caused by Pythium aphanidermatum. Plant Protect Tropics 11:37–43

    Google Scholar 

  • Bano Q, Ilyas N, Bano A, Zafar N, Akram A, Hassan F (2013) Effect of Azospirillum inoculation on maize (Zea mays L.) under drought stress. Pak J Bot 45(1):13–20

    CAS  Google Scholar 

  • Barahona E, Navazo A, Martínez-Granero F, Zea-Bonilla T, Pérez-Jiménez RM, Martín M, Rivilla R (2011) Pseudomonas fluorescens F113 mutant with enhanced competitive colonization ability and improved biocontrol activity against fungal root pathogens. Appl Environ Microbiol 77(15):5412–5419

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bashan Y, Holguin G, De-Bashan LE (2004) Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997–2003). Can J Microbiol 50(8):521–577

    CAS  PubMed  Google Scholar 

  • Baysal Ö, Soylu EM, Soylu S (2003) Induction of defence-related enzymes and resistance by the plant activator acibenzolar-S-methyl in tomato seedlings against bacterial canker caused by Clavibacter michiganensis ssp. michiganensis. Plant Pathol 52(6):747–753

    CAS  Google Scholar 

  • Begum N, Wang L, Ahmad H, Akhtar K, Roy R, Khan MI, Zhao T (2021) Co-inoculation of Arbuscular mycorrhizal fungi and the plant growth-promoting rhizobacteria improve growth and photosynthesis in tobacco under drought stress by up-regulating antioxidant and mineral nutrition metabolism. Microb Ecol 83(4):971–988

    PubMed  Google Scholar 

  • Belimov A, Kunakova A, Safronova V, Stepanok V, Yudkin LY, Alekseev YV, Kozhemyakov A (2004) Employment of rhizobacteria for the inoculation of barley plants cultivated in soil contaminated with lead and cadmium. Microbiology 73(1):99–106

    CAS  Google Scholar 

  • Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68(1):1–13

    CAS  PubMed  Google Scholar 

  • Bharti N, Barnawal D, Awasthi A, Yadav A, Kalra A (2014) Plant growth promoting rhizobacteria alleviate salinity induced negative effects on growth, oil content and physiological status in Mentha arvensis. Acta Physiol Plant 36(1):45–60

    CAS  Google Scholar 

  • Bharti N, Barnawal D, Maji D, Kalra A (2015) Halotolerant PGPRs prevent major shifts in indigenous microbial community structure under salinity stress. Microb Ecol 70(1):196–208

    CAS  PubMed  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28(4):1327–1350

    CAS  PubMed  Google Scholar 

  • Bhattacharyya D, Garladinne M, Lee YH (2015) Volatile indole produced by rhizobacterium Proteus vulgaris JBLS202 stimulates growth of Arabidopsis thaliana through auxin, cytokinin, and brassinosteroid pathways. J Plant Growth Regul 34(1):158–168

    CAS  Google Scholar 

  • Bindschedler LV, Dewdney J, Blee KA, Stone JM, Asai T, Plotnikov J, Denoux C, Hayes T, Gerrish C, Davies DR (2006) Peroxidase-dependent apoplastic oxidative burst in Arabidopsis required for pathogen resistance. Plant J 47(6):851–863

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bong C, Sikorowski P (1991) Effects of cytoplasmic polyhedrosis virus and bacterial contamination on growth and development of the corn earworm, Helicoverpa zea (Lepidoptera: Noctuidae). J Invertebr Pathol 57(3):406–412

    Google Scholar 

  • Bottini R, Cassán F, Piccoli P (2004) Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl Microbiol Biotechnol 65(5):497–503

    CAS  PubMed  Google Scholar 

  • Boughton AJ, Hoover K, Felton GW (2006) Impact of chemical elicitor applications on greenhouse tomato plants and population growth of the green peach aphid. Myzus Persicae Entomol Exp Appl 120(3):175–188

    CAS  Google Scholar 

  • Boukhalfa H, Crumbliss AL (2002) Chemical aspects of siderophore mediated iron transport. Biometals 15(4):325–339

    CAS  PubMed  Google Scholar 

  • Bukhat S, Imran A, Javaid S, Shahid M, Majeed A, Naqqash T (2020) Communication of plants with microbial world: Exploring the regulatory networks for PGPR mediated defense signaling. Microbiol Res 238:126486

    CAS  PubMed  Google Scholar 

  • Çakmakçı R, Mosber G, Milton AH, Alatürk F, Ali B (2020) The effect of auxin and auxin-producing bacteria on the growth, essential oil yield, and composition in medicinal and aromatic plants. Curr Microbiol 77(4):564–577

    PubMed  Google Scholar 

  • Cao YY, Ni HT, Ting LI, Lay KD, Liu DS, He XY, Kangmiao OU, Tang XY, Wang XB, Qiu LJ (2020) Pseudomonas sp. TK35-L enhances tobacco root development and growth by inducing HRGPnt3 expression in plant lateral root formation. J Integr Agric 19(10):2549–2560

    CAS  Google Scholar 

  • Cassán F, Bottini R, Schneider G, Piccoli P (2001) Azospirillum brasilense and Azospirillum lipoferum hydrolyze conjugates of GA20 and metabolize the resultant aglycones to GA1 in seedlings of rice dwarf mutants. Plant Physiol 125(4):2053–2058

    PubMed  PubMed Central  Google Scholar 

  • Cassán F, Coniglio A, López G et al (2020) Everything you must know about Azospirillum and its impact on agriculture and beyond. Biol Fertil Soil 56:461–479

    Google Scholar 

  • Chadha S (2019) Plant-microbe interaction: gene-to-metabolite network. Bioactive molecules in plant defense. Springer, Cham, pp 75–100

    Google Scholar 

  • Chen M, Wei H, Cao J, Liu R, Wang Y, Zheng C (2007) Expression of Bacillus subtilis proBA genes and reduction of feedback inhibition of proline synthesis increases proline production and confers osmotolerance in transgenic Arabidopsis. BMB Rep 40(3):396–403

    CAS  Google Scholar 

  • Chen L, Liu Y, Wu G, Veronican Njeri K, Shen Q, Zhang N, Zhang R (2016) Induced maize salt tolerance by rhizosphere inoculation of Bacillus amyloliquefaciens SQR9. Physiol Plant 158(1):34–44

    CAS  PubMed  Google Scholar 

  • Chen M, Yang Z, Liu J, Zhu T, Wei X, Fan H, Wang B (2018) Adaptation mechanism of salt excluders under saline conditions and its applications. Int J Mol Sci 19:E3668

    Google Scholar 

  • Chen L, Wang MR, Li JW, Feng CH, Cui ZH, Zhao L, Wang QC (2019) Exogenous application of melatonin improves eradication of apple stem grooving virus from the infected in vitro shoots by shoot tip culture. Plant Pathol 68:997–1006

    CAS  Google Scholar 

  • Chien YC, Huang CH (2020) Biocontrol of bacterial spot on tomato by foliar spray and growth medium application of Bacillus amyloliquefaciens and Trichoderma asperellum. Eur J Plant Pathol 156(4):995–1003

    CAS  Google Scholar 

  • Choudhary DK, Johri BN, Prakash A (2008) Volatiles as priming agents that initiate plant growth and defence responses. Curr Sci 94:595–604

    CAS  Google Scholar 

  • Choudhary DK, Varma A, Tuteja N (2016) Plant-microbe interaction: an approach to sustainable agriculture. Springer, New York

    Google Scholar 

  • Chourasia KN, Lal MK, Tiwari RK, Dev D, Kardile HB, Patil VU, Kumar A, Vanishree G, Kumar D, Bhardwaj V, Meena JK (2021) Salinity stress in potato: understanding physiological. Biochem Mol Responses Life 11(6):545

    CAS  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71(9):4951–4959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Creus CM, Sueldo RJ, Barassi CA (2004) Water relations and yield in Azospirillum-inoculated wheat exposed to drought in the field. Can J Bot 82(2):273–281

    Google Scholar 

  • Dai A (2011) Drought under global warming: a review. Wiley Interdisc Rev 2(1):45–65

    Google Scholar 

  • Damir O, Mladen P, Božidar S, Srñan N (2011) Cultivation of the bacterium Azotobacter chroococcum for preparation of biofertilizers. Afr J Biotechnol 10(16):3104–3111

    Google Scholar 

  • de Oliveira DM, de Lima ALA, Diniz NB, Santos CEdReS, da Silva SLF, Simões AdN (2018) Inoculation of plant-growth-promoting rhizobacteria in Myracrodruon urundeuva Allemão supports in tolerance to drought stress. J Plant Interact 13(1):91–99

  • Defez R, Andreozzi A, Dickinson M, Charlton A, Tadini L, Pesaresi P, Bianco C (2017) Improved drought stress response in alfalfa plants nodulated by an IAA over-producing Rhizobium strain. Front Microbiol 8:2466

    PubMed  PubMed Central  Google Scholar 

  • Defez R, Andreozzi A, Romano S, Pocsfalvi G, Fiume I, Esposito R, Angelini C, Bianco C (2019) Bacterial IAA-delivery into medicago root nodules triggers a balanced stimulation of C and N metabolism leading to a biomass increase. Microorganisms 7(10):403

    CAS  PubMed  PubMed Central  Google Scholar 

  • Delepelaire P (2019) Bacterial ABC transporters of iron containing compounds. Res Microbiol 170(8):345–357

    CAS  PubMed  Google Scholar 

  • Devi R, Behera B, Raza MB, Mangal V, Altaf MA, Kumar R, Kumar A, Tiwari RK, Lal MK, Singh B (2021) An insight into microbes mediated heavy metal detoxification in plants: a review. J Soil Sci Plant Nutr 22:914–936

    Google Scholar 

  • Diels L, Spaans PH, Van Roy S, Hooyberghs L, Ryngaert A, Wouters H, Walter E, Winters J, Macaskie L, Finlay J, Pernfuss B (2003) Heavy metals removal by sand filters inoculated with metal sorbing and precipitating bacteria. Hydrometallurgy 71(1–2):235–241

    CAS  Google Scholar 

  • Dimkpa C, Merten D, Svatoš A, Büchel G, Kothe E (2009a) Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower (Helianthus annuus), respectively. J Appl Microbiol 107(5):1687–1696

    CAS  PubMed  Google Scholar 

  • Dimkpa C, Weinand T, Asch F (2009b) Plant–rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ 32(12):1682–1694

    CAS  PubMed  Google Scholar 

  • Dixit R, Agrawal L, Srivastava S, Chauhan PS (2022) Paenibacillus lentimorbus enhanced abiotic stress tolerance through lateral root formation and phytohormone regulation. J Plant Growth Regul 41(6):2198–209

    CAS  Google Scholar 

  • Dobbelaere S, Croonenborghs A, Thys A, Broek AV, Vanderleyden J (1999) Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant Soil 212(2):153–162

    Google Scholar 

  • Dodd IC, Pérez-Alfocea F (2012) Microbial amelioration of crop salinity stress. J Exp Bot 63(9):3415–3428

    CAS  PubMed  Google Scholar 

  • Donot F, Fontana A, Baccou JC, Schorr-Galindo S (2012) Microbial exopolysaccharides: main examples of synthesis, excretion, genetics and extraction. Carbohydr Polym 87(2):951–962

    CAS  Google Scholar 

  • Dowling DN, O’Gara F (1994) Metabolites of Pseudomonas involved in the biocontrol of plant disease. Trends Biotechnol 12(4):133–141

    CAS  Google Scholar 

  • Dudeja S, Suneja S, Khurana A (1997) Iron acquisition system and its role in legume-Rhizobium symbiosis. Indian J Microbiol 37:1–12

    Google Scholar 

  • Dutta J, Handique PJ, Thakur D (2015) Assessment of culturable tea rhizobacteria isolated from tea estates of Assam, India for growth promotion in commercial tea cultivars. Front Microbiol 6:1252

    PubMed  PubMed Central  Google Scholar 

  • Egamberdieva D, Kucharova Z (2009) Selection for root colonising bacteria stimulating wheat growth in saline soils. Biol Fertil Soils 45(6):563–571

    Google Scholar 

  • Egamberdieva D, Jabborova D, Berg G (2016a) Synergistic interactions between Bradyrhizobium japonicum and the endophyte Stenotrophomonas rhizophila and their effects on growth, and nodulation of soybean under salt stress. Plant Soil 405(1):35–45

    CAS  Google Scholar 

  • Egamberdieva D, Wirth S, Behrendt U, Abd-Allah EF, Berg G (2016) Biochar treatment resulted in a combined effect on soybean growth promotion and a shift in plant growth promoting rhizobacteria. Front Microbiol 7:209

    PubMed  PubMed Central  Google Scholar 

  • El Ghazali GE (2020) Suaeda vermiculata Forssk. ex JF Gmel.: structural characteristics and adaptations to salinity and drought: a review. Int J Sci 9(02):28–33

    Google Scholar 

  • El-Gendi H, Al-Askar AA, Király L, Samy MA, Moawad H, Abdelkhalek A (2022) Foliar applications of Bacillus subtilis HA1 culture filtrate enhance tomato growth and induce systemic resistance against tobacco mosaic virus infection. Horticulturae 8(4):301

    Google Scholar 

  • Elsharkawy MM (2019) Induced systemic resistance against Cucumber mosaic virus by Phoma sp. GS8-2 stimulates transcription of pathogenesis-related genes in Arabidopsis. Pest Manag Sci 75(3):859–866

    CAS  PubMed  Google Scholar 

  • Emenecker RJ, Strader LC (2020) Auxin-abscisic acid interactions in plant growth and development. Biomolecules 10(2):281

    CAS  PubMed  PubMed Central  Google Scholar 

  • Etesami H, Beattie GA (2017) Plant-microbe interactions in adaptation of agricultural crops to abiotic stress conditions. Probiotics and plant health. Springer, Singapore, pp 163–200

    Google Scholar 

  • Fahad S, Hussain S, Bano A, Saud S, Hassan S, Shan D, Khan FA, Khan F, Chen Y, Wu C (2015) Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. Environ Sci Pollut Res 22(7):4907–4921

    Google Scholar 

  • Fan P, Chen D, He Y, Zhou Q, Tian Y, Gao L (2016) Alleviating salt stress in tomato seedlings using Arthrobacter and Bacillus megaterium isolated from the rhizosphere of wild plants grown on saline–alkaline lands. Int J Phytoremediation 18(11):1113–1121

    CAS  PubMed  Google Scholar 

  • Fang L, Wang M, Cai L, Cang L (2017) Deciphering biodegradable chelant-enhanced phytoremediation through microbes and nitrogen transformation in contaminated soils. Environ Sci Pollut Res 24(17):14627–14636

    CAS  Google Scholar 

  • Fatima S, Anjum T (2017) Identification of a potential ISR determinant from Pseudomonas aeruginosa PM12 against Fusarium wilt in tomato. Front Plant Sci 8:848

    PubMed  PubMed Central  Google Scholar 

  • Fernando W, Nakkeeran S, Zhang Y, Savchuk S (2007) Biological control of Sclerotinia sclerotiorum (Lib.) de Bary by Pseudomonas and Bacillus species on canola petals. Crop Prot 26(2):100–107

    Google Scholar 

  • Figueiredo M, Martinez C, Burity H, Chanway C (2008) Plant growth-promoting rhizobacteria for improving nodulation and nitrogen fixation in the common bean (Phaseolus vulgaris L.). World J Microbiol Biotechnol 24(7):1187–1193

    CAS  Google Scholar 

  • Flores-Félix JD, Silva LR, Rivera LP, Marcos-García M, García-Fraile P, Martínez-Molina E, Mateos PF, Velázquez E, Andrade P, Rivas R (2015) Plants probiotics as a tool to produce highly functional fruits: the case of Phyllobacterium and vitamin C in strawberries. PLoS ONE 10(4):e0122281

    PubMed  PubMed Central  Google Scholar 

  • Friedrich N, Hagedorn M, Soldati-Favre D, Soldati T (2012) Prison break: pathogens’ strategies to egress from host cells. Microbiol Mol Biol Rev 76(4):707–720

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garnica-Vergara A, Barrera-Ortiz S, Muñoz-Parra E, Raya-González J, Méndez-Bravo A, Macías-Rodríguez L, Ruiz-Herrera LF, López-Bucio J (2016) The volatile 6-pentyl-2H-pyran-2-one from Trichoderma atroviride regulates Arabidopsis thaliana root morphogenesis via auxin signaling and ETHYLENE INSENSITIVE 2 functioning. New Phytol 209(4):1496–1512

    CAS  PubMed  Google Scholar 

  • Ge M, Gong M, Jiao Y, Li Y, Shen L, Li B, Yang J (2022) Serratia marcescens-S3 inhibits Potato virus Y by activating ubiquitination of molecular chaperone proteins NbHsc70-2 in Nicotiana benthamiana. Microb Biotechnol 15(4):1178–1188

    CAS  PubMed  Google Scholar 

  • German MA, Burdman S, Okon Y, Kigel J (2000) Effects of Azospirillum brasilense on root morphology of common bean (Phaseolus vulgaris L.) under different water regimes. Biol Fertil Soils 32(3):259–264

    Google Scholar 

  • Ghanbarzadeh Z, Mohsenzadeh S, Rowshan V, Zarei M (2020) Mitigation of water deficit stress in Dracocephalum moldavica by symbiotic association with soil microorganisms. Sci Hortic 272:109549

    CAS  Google Scholar 

  • Gindrat D (1979) Alternaria radicina, an important parasite of market garden Umbelliferae. Revue Suisse De Viticulture D’arboriculture D’horticulture 11(6):257–267

    Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41(2):109–117

    CAS  Google Scholar 

  • Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251(1):1–7

    CAS  PubMed  Google Scholar 

  • Glick BR, Pasternak JJ (2003) Molecular biotechnology: principles and applications of recombinant DNA. ASM Press, Washington

    Google Scholar 

  • Glick BR, Holguin G, Patten C, Penrose DM (1999) Biochemical and genetic mechanisms used by plant growth promoting bacteria. World Scientific, London

    Google Scholar 

  • Gortari MC, Hours RA (2008) Fungal chitinases and their biological role in the antagonism onto nematode eggs: a review. Mycol Prog 7(4):221–238

    Google Scholar 

  • Goswami D, Thakker JN, Dhandhukia PC (2016) Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review. Cogent Food Agric 2(1):1127500

    Google Scholar 

  • Gouda S, Kerry RG, Das G, Paramithiotis S, Shin H-S, Patra JK (2018) Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol Res 206:131–140

    PubMed  Google Scholar 

  • Govindasamy V, Senthilkumar M, Upendra-Kumar AK (2008) PGPR-biotechnology for management of abiotic and biotic stresses in crop plants. In: Maheshwari DK, Dubey RC (eds) Potential microorganisms for sustainable agriculture. Springer, New York, pp 26–48

    Google Scholar 

  • Gray E, Smith D (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant–bacterium signaling processes. Soil Biol Biochem 37(3):395–412

    CAS  Google Scholar 

  • Grayson M (2013) Agriculture and drought. Nature 501(7468):S1–S1

    CAS  PubMed  Google Scholar 

  • Grichko VP, Glick BR (2001) Ethylene and flooding stress in plants. Plant Physiol Biochem 39(1):1–9

    CAS  Google Scholar 

  • Groppa MD, Benavides MP, Zawoznik MS (2012) Root hydraulic conductance, aquaporins and plant growth promoting microorganisms: a revision. Appl Soil Ecol 61:247–254

    Google Scholar 

  • Gupta R, Bar M (2020) Plant immunity, priming, and systemic resistance as mechanisms for Trichoderma spp. biocontrol. In: Sharma A, Sharma P (eds) Trichoderma. Springer, Singapore, pp 81–110

    Google Scholar 

  • Gupta BK, Sahoo KK, Anwar K, Nongpiur RC, Deshmukh R, Pareek A, Singla-Pareek SL (2021) Silicon nutrition stimulates Salt-Overly Sensitive (SOS) pathway to enhance salinity stress tolerance and yield in rice. Plant Physiol Biochem 166:593–604

    CAS  PubMed  Google Scholar 

  • Gusain YS, Singh U, Sharma A (2015) Bacterial mediated amelioration of drought stress in drought tolerant and susceptible cultivars of rice (Oryza sativa L.). Afr J Biotechnol 14(9):764–773

    Google Scholar 

  • Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3(4):307–319

    CAS  PubMed  Google Scholar 

  • Hahm MS, Sumayo M, Hwang YJ, Jeon SA, Park SJ, Lee JY, Ahn JH, Kim BS, Ryu CM, Ghim SY (2012) Biological control and plant growth promoting capacity of rhizobacteria on pepper under greenhouse and field conditions. J Microbiol 50(3):380–385

    PubMed  Google Scholar 

  • Hahm M-S, Son J-S, Hwang Y-J, Kwon D-K, Ghim S-Y (2017) Alleviation of salt stress in pepper (Capsicum annum L.) plants by plant growth-promoting rhizobacteria. J Microbiol Biotechnol 27(10):1790–1797

    CAS  PubMed  Google Scholar 

  • Han H-S, Lee K (2006) Effect of co-inoculation with phosphate and potassium solubilizing bacteria on mineral uptake and growth of pepper and cucumber. Plant Soil Environ 52(3):130

    CAS  Google Scholar 

  • Han Q-Q, Lü X-P, Bai J-P, Qiao Y, Paré PW, Wang S-M, Zhang J-L, Wu Y-N, Pang X-P, Xu W-B (2014) Beneficial soil bacterium Bacillus subtilis (GB03) augments salt tolerance of white clover. Front Plant Sci 5:525

    PubMed  PubMed Central  Google Scholar 

  • Hao Z, Xie W, Chen B (2019) Arbuscular mycorrhizal symbiosis affects plant immunity to viral infection and accumulation. Viruses 11(6):534

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hartel PG, Alexander M (1986) Role of extracellular polysaccharide production and clays in the desiccation tolerance of cowpea Bradyrhizobia. Soil Sci Soc Am J 50(5):1193–1198

    CAS  Google Scholar 

  • Hasegawa PM (2013) Sodium (Na+) homeostasis and salt tolerance of plants. Environ Exp Bot 92:19–31

    CAS  Google Scholar 

  • Hashem A, Abd-Allah EF, Alqarawi AA, Al-Huqail AA, Wirth S, Egamberdieva D (2016) The interaction between arbuscular mycorrhizal fungi and endophytic bacteria enhances plant growth of Acacia gerrardii under salt stress. Front Microbiol 7:1089

    PubMed  PubMed Central  Google Scholar 

  • He X, Xu M, Wei Q, Tang M, Guan L, Lou L, Xu X, Hu Z, Chen Y, Shen Z, Xia Y (2020) Promotion of growth and phytoextraction of cadmium and lead in Solanum nigrum L. mediated by plant-growth-promoting rhizobacteria. Ecotoxicol Environ Saf 205:111333

    CAS  PubMed  Google Scholar 

  • He A, Niu S, Yang D, Ren W, Zhao L, Sun Y, Mang L, Zhao Q, Paré PW, Zhang J (2021) Two PGPR strains from the rhizosphere of Haloxylon ammodendron promoted growth and enhanced drought tolerance of ryegrass. Plant Physiol Biochem 161:74–85

    CAS  PubMed  Google Scholar 

  • Heil M, Bueno JCS (2007) Within-plant signaling by volatiles leads to induction and priming of an indirect plant defense in nature. Proc Natl Acad Sci USA 104(13):5467–5472

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoegy F, Celia H, Mislin GL, Vincent M, Gallay J, Schalk IJ (2005) Binding of iron-free siderophore, a common feature of siderophore outer membrane transporters of Escherichia coli and Pseudomonas aeruginosa. J Biol Chem 280(21):20222–20230

    CAS  PubMed  Google Scholar 

  • Holopainen JK, Gershenzon J (2010) Multiple stress factors and the emission of plant VOCs. Trends Plant Sci 15(3):176–184

    CAS  PubMed  Google Scholar 

  • Hong B, Joe M, Selvakumar G, Kim K, Choi J, Sa T (2017) Influence of salinity variations on exocellular polysaccharide production, biofilm formation and flocculation in halotolerant bacteria. J Environ Biol 38(4):657

    CAS  Google Scholar 

  • Huang XF, Zhou D, Guo J, Manter D, Reardon K, Vivanco J (2015) Bacillus spp. from rainforest soil promote plant growth under limited nitrogen conditions. J Appl Microbiol 118(3):672–684

    CAS  PubMed  Google Scholar 

  • Huo Y, Kang JP, Ahn JC, Kim YJ, Piao CH, Yang DU, Yang DC (2021) Siderophore-producing rhizobacteria reduce heavy metal-induced oxidative stress in Panax ginseng Meyer. J Ginseng Res 45(2):218–227

    PubMed  Google Scholar 

  • Husson E, Hadad C, Huet G, Laclef S, Lesur D, Lambertyn V, Jamali A, Gottis S, Sarazin C, Van Nhien AN (2017) The effect of room temperature ionic liquids on the selective biocatalytic hydrolysis of chitin via sequential or simultaneous strategies. Green Chem 19(17):4122–4131

    CAS  Google Scholar 

  • Ilangumaran G, Smith DL (2017) Plant growth promoting rhizobacteria in amelioration of salinity stress: a systems biology perspective. Front Plant Sci 8:1768

    PubMed  PubMed Central  Google Scholar 

  • Innerebner G, Knief C, Vorholt JA (2011) Protection of Arabidopsis thaliana against leaf-pathogenic Pseudomonas syringae by Sphingomonas strains in a controlled model system. Appl Environ Microbiol 77(10):3202–3210

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iqbal A, Hasnain S (2013) Aeromonas punctata PNS-1: a promising candidate to change the root morphogenesis of Arabidopsis thaliana in MS and sand system. Acta Physiol Plant 35(3):657–665

    CAS  Google Scholar 

  • Isayenkov SV, Maathuis FJ (2019) Plant salinity stress: many unanswered questions remain. Front Plant Sci 10:80

    PubMed  PubMed Central  Google Scholar 

  • Jambhulkar PP, Sharma P (2013) Promotion of rice seedling growth characteristics by development and use of bioformulation of Pseudomonas fluorescens. Indian J Agric Sci 83:136–142

    Google Scholar 

  • Jambhulkar PP, Sharma P, Yadav R (2016) Delivery systems for introduction of microbial inoculants in the field. In: Singh DP, Singh HB, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity. Springer, New Delhi, pp 199–218

    Google Scholar 

  • Jha Y (2018) Induction of anatomical, enzymatic, and molecular events in maize by PGPR under biotic stress. Role of rhizospheric microbes in soil. Springer, Singapore, pp 125–141

    Google Scholar 

  • Jha CK, Saraf M (2012) Hormonal signaling by PGPR improves plant health under stress conditions. In: Maheshwar DK (ed) Bacteria in Agrobiology: stress management. Springer, Berlin, pp 119–140

    Google Scholar 

  • Jha PN (2015) Molecular identification and characterization of rhizospheric bacteria for plant growth promoting ability. Int J Curr Biotechnol 3 (7)

  • Jiao J, Ma Y, Chen S, Liu C, Song Y, Qin Y, Yuan C, Liu Y (2016) Melatonin-producing endophytic bacteria from grapevine roots promote the abiotic stress-induced production of endogenous melatonin in their hosts. Front Plant Sci 7:1387

    PubMed  PubMed Central  Google Scholar 

  • Jing YD, He ZL, Yang XE (2007) Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. J Zhejiang Univ Sci 8(3):192–207

    CAS  Google Scholar 

  • Jog R, Pandya M, Nareshkumar G, Rajkumar S (2014) Mechanism of phosphate solubilization and antifungal activity of Streptomyces spp. isolated from wheat roots and rhizosphere and their application in improving plant growth. Microbiology 160(4):778–788

    CAS  PubMed  Google Scholar 

  • Ju C, Yoon GM, Shemansky JM, Lin DY, Ying ZI, Chang J, Garrett WM, Kessenbrock M, Groth G, Tucker ML (2012) CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis. Proc Natl Acad Sci USA 109(47):19486–19491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ju W, Liu L, Jin X, Duan C, Cui Y, Wang J, Ma D, Zhao W, Wang Y, Fang L (2020) Co-inoculation effect of plant-growth-promoting rhizobacteria and rhizobium on EDDS assisted phytoremediation of Cu contaminated soils. Chemosphere 254:126724

    CAS  PubMed  Google Scholar 

  • Kamal R, Gusain YS, Kumar V (2014) Interaction and symbiosis of AM fungi, actinomycetes and plant growth promoting rhizobacteria with plants: strategies for the improvement of plants health and defense system. Int J Curr Microbial Appl Sci 3(7):564–585

    Google Scholar 

  • Kamara A, Menkir A, Badu-Apraku B, Ibikunle O (2003) The influence of drought stress on growth, yield and yield components of selected maize genotypes. J Agric Sci 141(1):43–50

    Google Scholar 

  • Kang S-M, Radhakrishnan R, Khan AL, Kim M-J, Park J-M, Kim B-R, Shin D-H, Lee I-J (2014) Gibberellin secreting rhizobacterium, Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions. Plant Physiol Biochem 84:115–124

    CAS  PubMed  Google Scholar 

  • Kang SM, Waqas M, Hamayun M, Asaf S, Khan AL, Kim AY, Park YG, Lee IJ (2017) Gibberellins and indole-3-acetic acid producing rhizospheric bacterium Leifsonia xyli SE134 mitigates the adverse effects of copper-mediated stress on tomato. J Plant Interact 12(1):373–380

    CAS  Google Scholar 

  • Kang SM, Shahzad R, Bilal S, Khan AL, Park YG, Lee KE, Asaf S, Khan MA, Lee IJ (2019) Indole-3-acetic-acid and ACC deaminase producing Leclercia adecarboxylata MO1 improves Solanum lycopersicum L. growth and salinity stress tolerance by endogenous secondary metabolites regulation. BMC Microbiol. 19(1):1–14

    Google Scholar 

  • Karadeniz A, Topcuoğlu ŞF, Inan S (2006) Auxin, gibberellin, cytokinin and abscisic acid production in some bacteria. World J Microbiol Biotechnol 22(10):1061–1064

    CAS  Google Scholar 

  • Kasim WA, Osman ME, Omar MN, Abd El-Daim IA, Bejai S, Meijer J (2013) Control of drought stress in wheat using plant-growth-promoting bacteria. J Plant Growth Regul 32(1):122–130

    CAS  Google Scholar 

  • Kasim WA, Gaafar RM, Abou-Ali RM, Omar MN, Hewait HM (2016) Effect of biofilm forming plant growth promoting rhizobacteria on salinity tolerance in barley. Ann Agric Sci 61(2):217–227

    Google Scholar 

  • Katiyar V, Goel R (2004) Siderophore mediated plant growth promotion at low temperature by mutant of fluorescent pseudomonad⋆. Plant Growth Regul 42(3):239–244

    CAS  Google Scholar 

  • Kaur H, Kaur J, Gera R (2016) Plant growth promoting rhizobacteria: a boon to agriculture. Int J Cell Sci Biotechnol 5:17–22

    Google Scholar 

  • Kaymak HÇ, Güvenç İ, Yarali F, Dönmez MF (2009) The effects of bio-priming with PGPR on germination of radish (Raphanus sativus L.) seeds under saline conditions. Turk J Agric For. 33(2):173–179

    CAS  Google Scholar 

  • Kempster VN, Scott ES, Davies KA (2002) Evidence for systemic, cross-resistance in white clover (Trifolium repens) and annual medic (Medicago truncatula var truncatula) induced by biological and chemical agents. Biocontrol Sci Technol 12(5):615–623

    Google Scholar 

  • Kennedy IR, Choudhury A, Kecskés ML (2004) Non-symbiotic bacterial diazotrophs in crop-farming systems: can their potential for plant growth promotion be better exploited? Soil Biol Biochem 36(8):1229–1244

    CAS  Google Scholar 

  • Keskin BC, Yuksel B, Memon AR, Topal-Sarıkaya A (2010) Abscisic acid regulated gene expression in bread wheat ('Triticum aestivum’L.). Aust J Crop Sci 4(8):617–625

    CAS  Google Scholar 

  • Khan MA, Asaf S, Khan AL, Adhikari A, Jan R, Ali S, Imran M, Kim K-M, Lee IJ (2019) Halotolerant rhizobacterial strains mitigate the adverse effects of NaCl stress in soybean seedlings. Biomed Res Int. https://doi.org/10.1155/2019/9530963

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan N, Bano A, Ali S, Babar MA (2020a) Crosstalk amongst phytohormones from planta and PGPR under biotic and abiotic stresses. Plant Growth Regul 90(2):189–203

    CAS  Google Scholar 

  • Khan MIR, Trivellini A, Chhillar H, Chopra P, Ferrante A, Khan NA, Ismail AM (2020b) The significance and functions of ethylene in flooding stress tolerance in plants. Environ Exp Bot 179:104188

    CAS  Google Scholar 

  • Khanna K, Jamwal VL, Gandhi SG, Ohri P, Bhardwaj R (2019) Metal resistant PGPR lowered Cd uptake and expression of metal transporter genes with improved growth and photosynthetic pigments in Lycopersicon esculentum under metal toxicity. Sci Rep 9(1):1–14

    Google Scholar 

  • Kim K, Jang YJ, Lee SM, Oh BT, Chae JC, Lee KJ (2014) Alleviation of salt stress by Enterobacter sp. EJ01 in tomato and Arabidopsis is accompanied by up-regulation of conserved salinity responsive factors in plants. Mol. Cells. 37(2):109

    PubMed  PubMed Central  Google Scholar 

  • Kim AY, Shahzad R, Kang SM, Seo CW, Park YG, Park HJ, Lee IJ (2017) IAA-producing Klebsiella variicola AY13 reprograms soybean growth during flooding stress. J Crop Sci Biotechnol 20(4):235–242

    Google Scholar 

  • Kloepper JW (1994) Plant growth-promoting rhizobacteria (other systems). Azospirillum/Plant Assoc 187:137–166

    Google Scholar 

  • Kloepper J, Scher F, Laliberte M, Tipping B (1986) Emergence-promoting rhizobacteria: description and implications for agriculture. In: Swinburne TR (ed) Iron, siderophores, and plant diseases. Springer, Boston, pp 155–164

    Google Scholar 

  • Konappa N, Krishnamurthy S, Arakere UC, Chowdappa S, Ramachandrappa NS (2020) Efficacy of indigenous plant growth-promoting rhizobacteria and Trichoderma strains in eliciting resistance against bacterial wilt in a tomato. Egypt J Biol Pest Control 30(1):1–13

    Google Scholar 

  • Kuan KB, Othman R, Abdul Rahim K, Shamsuddin ZH (2016) Plant growth-promoting rhizobacteria inoculation to enhance vegetative growth, nitrogen fixation and nitrogen remobilisation of maize under greenhouse conditions. PLoS ONE 11(3):e0152478

    PubMed  PubMed Central  Google Scholar 

  • Kulkarni S, Anahosur K (1994) Effect of age of groundnut plant to infection of Sclerotium Rolfsii Sacc A causal agent of stem rot disease. Karnataka J Agric Sci 7:367–368

    Google Scholar 

  • Kumar A (2016) Phosphate solubilizing bacteria in agriculture biotechnology: diversity, mechanism and their role in plant growth and crop yield. Int J Adv Res 4(4):116–124

    Google Scholar 

  • Kumar A, Verma JP (2018) Does plant—microbe interaction confer stress tolerance in plants: a review? Microbiol Res 207:41–52

    CAS  PubMed  Google Scholar 

  • Kumar H, Bajpai VK, Dubey R, Maheshwari D, Kang SC (2010) Wilt disease management and enhancement of growth and yield of Cajanus cajan (L.) var Manak by bacterial combinations amended with chemical fertilizer. Crop Prot 29(6):591–598

    Google Scholar 

  • Kumar A, Singh VK, Tripathi V, Singh PP, Singh AK (2018) Plant growth-promoting rhizobacteria (PGPR): perspective in agriculture under biotic and abiotic stress. In: Prasad R, Gill SS, Tuteja N (eds) Crop improvement through microbial biotechnology. Elsevier, Amsterdam, pp 333–342

    Google Scholar 

  • Lafitte H, Yongsheng G, Yan S, Li Z (2007) Whole plant responses, key processes, and adaptation to drought stress: the case of rice. J Exp Bot 58(2):169–175

    CAS  PubMed  Google Scholar 

  • Lal MK, Tiwari RK, Gahlaut V, Mangal V, Kumar A, Singh MP, Paul V, Kumar S, Singh B, Zinta G (2021) Physiological and molecular insights on wheat responses to heat stress. Plant Cell Rep 41:501–518

    PubMed  Google Scholar 

  • Lavania M, Chauhan PS, Chauhan SV, Singh HB, Nautiyal CS (2006) Induction of plant defense enzymes and phenolics by treatment with plant growth promoting rhizobacteria Serratia marcescens NBRI1213. Curr Microbiol 52(5):363–368

    CAS  PubMed  Google Scholar 

  • Ledger T, Rojas S, Timmermann T, Pinedo I, Poupin MJ, Garrido T, Richter P, Tamayo J, Donoso R (2016) Volatile-mediated effects predominate in Paraburkholderia phytofirmans growth promotion and salt stress tolerance of Arabidopsis thaliana. Front Microbiol 7:1838

    PubMed  PubMed Central  Google Scholar 

  • Leeman M, Den Ouden F, Van Pelt J, Dirkx F, Steijl H, Bakker P, Schippers B (1996) Iron availability affects induction of systemic resistance to Fusarium wilt of radish by Pseudomonas fluorescens. Phytopathology 86(2):149–155

    CAS  Google Scholar 

  • Lemanceau P, Bakker P, De Kogel WJ, Alabouvette C, Schippers B (1992) Effect of pseudobactin 358 production by Pseudomonas putida WCS358 on suppression of fusarium wilt of carnations by nonpathogenic Fusarium oxysporum Fo47. Appl Environ Microbiol 58(9):2978–2982

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li SW, Zeng XY, Leng Y, Feng L, Kang XH (2018) Indole-3-butyric acid mediates antioxidative defense systems to promote adventitious rooting in mung bean seedlings under cadmium and drought stresses. Ecotoxicol Environ Saf 161:332–341

    CAS  PubMed  Google Scholar 

  • Li H, Qiu Y, Yao T, Ma Y, Zhang H, Yang X (2020) Effects of PGPR microbial inoculants on the growth and soil properties of Avena sativa, Medicago sativa, and Cucumis sativus seedlings. Soil Tillage Res 199:104577

    Google Scholar 

  • Li L, Guo N, Feng Y, Duan M, Li C (2022) Effect of Piriformospora indica-induced systemic resistance and basal immunity against Rhizoctonia cerealis and Fusarium graminearum in Wheat. Front Plant Sci 13:836940

    PubMed  PubMed Central  Google Scholar 

  • Liang B, Ma C, Zhang Z, Wei Z, Gao T, Zhao Q, Ma F, Li C (2018) Long-term exogenous application of melatonin improves nutrient uptake fuxes in apple plants under moderate drought stress. Environ Exp Bot 155:650–661

    CAS  Google Scholar 

  • Liu D, Lian B, Dong H (2012) Isolation of Paenibacillus sp. and assessment of its potential for enhancing mineral weathering. Geomicrobiol J 29(5):413–421

    CAS  Google Scholar 

  • Liu F, Bian Z, Jia Z, Zhao Q, Song S (2012b) The GCR1 and GPA1 participate in promotion of Arabidopsis primary root elongation induced by N-acyl-homoserine lactones, the bacterial quorum-sensing signals. Mol Plant Microbe Interact 25(5):677–683

    CAS  PubMed  Google Scholar 

  • Liu C, Chen L, Zhao R, Li R, Zhang S, Yu W, Sheng J, Shen L (2019) Melatonin induces disease resistance to Botrytis cinerea in tomato fruit by activating jasmonic acid signaling pathway. J Agric Food Chem 67:6116–6124

    CAS  PubMed  Google Scholar 

  • Llorente BE, Alasia MA, Larraburu EE (2016) Biofertilization with Azospirillum brasilense improves in vitro culture of Handroanthus ochraceus, a forestry, ornamental and medicinal plant. N Biotechnol 33(1):32–40

    CAS  PubMed  Google Scholar 

  • Loganathan M, Sible G, Maruthasalam S, Saravanakumar D, Raguchander T, Sivakumar M, Samiyappan R (2010) Trichoderma and chitin mixture based bioformulation for the management of head rot (Sclerotinia sclerotiorum (Lib.) deBary)–root-knot (Meloidogyne incognita Kofoid and White; Chitwood) complex diseases of cabbage. Arch Phytopathol Pflanzenschutz 43(10):1011–1024

    CAS  Google Scholar 

  • Loper JE, Henkels MD (1999) Utilization of heterologous siderophores enhances levels of iron available to Pseudomonas putida in the rhizosphere. Appl Environ Microbiol 65(12):5357–5363

    CAS  PubMed  PubMed Central  Google Scholar 

  • López-Bucio J, Campos-Cuevas JC, Hernández-Calderón E, Velásquez-Becerra C, Farías-Rodríguez R, Macías-Rodríguez LI, Valencia-Cantero E (2007) Bacillus megaterium rhizobacteria promote growth and alter root-system architecture through an auxin-and ethylene-independent signaling mechanism in Arabidopsis thaliana. Mol Plant Microbe Interact 20(2):207–217

    PubMed  Google Scholar 

  • Loreto F, Schnitzler J-P (2010) Abiotic stresses and induced BVOCs. Trends Plant Sci 15(3):154–166

    CAS  PubMed  Google Scholar 

  • Lucas JA, García-Cristobal J, Bonilla A, Ramos B, Gutierrez-Manero J (2014) Beneficial rhizobacteria from rice rhizosphere confers high protection against biotic and abiotic stress inducing systemic resistance in rice seedlings. Plant Physiol Biochem 82:44–53

    CAS  PubMed  Google Scholar 

  • Lugtenberg BJ, Malfanova N, Kamilova F, Berg G (2013) Plant growth promotion by microbes. Mol Microb Ecol Rhizosphere 2:561–573

    CAS  Google Scholar 

  • Ma W, Guinel FC, Glick BR (2003) Rhizobium leguminosarum biovar viciae 1-aminocyclopropane-1-carboxylate deaminase promotes nodulation of pea plants. Appl Environ Microbiol 69(8):4396–4402

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mahmood S, Daur I, Al-Solaimani SG, Ahmad S, Madkour MH, Yasir M, Hirt H, Ali S, Ali Z (2016) Plant growth promoting rhizobacteria and silicon synergistically enhance salinity tolerance of mung bean. Front Plant Sci 7:876

    PubMed  PubMed Central  Google Scholar 

  • Mahmoud OMB, Hidri R, Talbi-Zribi O, Taamalli W, Abdelly C, Djébali N (2020) Auxin and proline producing rhizobacteria mitigate salt-induced growth inhibition of barley plants by enhancing water and nutrient status. S Afr J Bot 128:209–217

    Google Scholar 

  • Maksimov I, Abizgil’Dina R, Pusenkova L (2011) Plant growth promoting rhizobacteria as alternative to chemical crop protectors from pathogens. Appl Biochem Microbiol 47(4):333–345

    CAS  Google Scholar 

  • Manoj SR, Karthik C, Kadirvelu K, Arulselvi PI, Shanmugasundaram T, Bruno B, Rajkumar M (2020) Understanding the molecular mechanisms for the enhanced phytoremediation of heavy metals through plant growth promoting rhizobacteria: a review. J Environ Manage 254:109779

    CAS  PubMed  Google Scholar 

  • Mantelin S, Touraine B (2004) Plant growth-promoting bacteria and nitrate availability: impacts on root development and nitrate uptake. J Exp Bot 55(394):27–34

    CAS  PubMed  Google Scholar 

  • Martínez-Atienza J, Jiang X, Garciadeblas B, Mendoza I, Zhu JK, Pardo JM, Quintero FJ (2007) Conservation of the salt overly sensitive pathway in rice. Plant Physiol 143(2):1001–1012

    PubMed  PubMed Central  Google Scholar 

  • Martínez-Medina A, Van Wees SC, Pieterse CM (2017) Airborne signals from Trichoderma fungi stimulate iron uptake responses in roots resulting in priming of jasmonic acid-dependent defences in shoots of Arabidopsis thaliana and Solanum lycopersicum. Plant Cell Environ 40(11):2691–2705

    PubMed  Google Scholar 

  • Marulanda A, Azcón R, Chaumont F, Ruiz-Lozano JM, Aroca R (2010) Regulation of plasma membrane aquaporins by inoculation with a Bacillus megaterium strain in maize (Zea mays L.) plants under unstressed and salt-stressed conditions. Planta 232(2):533–543

    CAS  PubMed  Google Scholar 

  • Masalha J, Kosegarten H, Elmaci Ö, Mengel K (2000) The central role of microbial activity for iron acquisition in maize and sunflower. Biol Fertil Soils 30(5):433–439

    CAS  Google Scholar 

  • Matse DT, Huang CH, Huang YM, Yen MY (2020) Effects of coinoculation of Rhizobium with plant growth promoting rhizobacteria on the nitrogen fixation and nutrient uptake of Trifolium repens in low phosphorus soil. J Plant Nutr 43(5):739–752

    CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42(6):565–572

    CAS  PubMed  Google Scholar 

  • Meena B, Muthusamy M (1998) Efficacy of different mode of application of Pseudomonas fluorescens against rice sheath blight disease. Oryza 35:293–294

    Google Scholar 

  • Meena KK, Sorty AM, Bitla UM, Choudhary K, Gupta P, Pareek A, Minhas PS (2017) Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Front Plant Sci 8:172

    PubMed  PubMed Central  Google Scholar 

  • Meena M, Swapnil P, Divyanshu K, Kumar S, Tripathi YN, Zehra A, Upadhyay RS (2020) PGPR-mediated induction of systemic resistance and physiochemical alterations in plants against the pathogens: current perspectives. J Basic Microbiol 60(10):828–861

    CAS  PubMed  Google Scholar 

  • Mohan V, Devi KS, Anushya A, Revathy G, Kuzhalvaimozhi GV, Vijayalakshmi K (2017) Screening of salt tolerant and growth promotion efficacy of phosphate solubilizing bacteria. J Acad Ind Res 5(12):168

    CAS  Google Scholar 

  • Moustafa-Farag M, Almoneafy A, Mahmoud A, Elkelish A, Arnao MB, Li L, Ai S (2020) Melatonin and its protective role against biotic stress impacts on plants. Biomolecules 10:1–12

    Google Scholar 

  • Mubeen MUHAMMAD, Bano A, Ali B, Islam ZU, Ahmad A, Hussain S, Nasim WAJID (2021) Effect of plant growth promoting bacteria and drought on spring maize (Zea mays L.). Pak J Bot 53(2):731–739

    Google Scholar 

  • Murali M, Singh SB, Gowtham HG, Shilpa N, Prasad M, Aiyaz M, Amruthesh KN (2021) Induction of drought tolerance in Pennisetum glaucum by ACC deaminase producing PGPR-Bacillus amyloliquefaciens through Antioxidant defense system. Microbiol Res 253:126891

    CAS  PubMed  Google Scholar 

  • Murphy JF, Zehnder GW, Schuster DJ, Sikora EJ, Polston JE, Kloepper JW (2000) Plant growth-promoting rhizobacterial mediated protection in tomato against Tomato mottle virus. Plant Dis 84(7):779–784

    PubMed  Google Scholar 

  • Mushtaq Z, Asghar HN, Zahir ZA (2021) Comparative growth analysis of okra (Abelmoschus esculentus) in the presence of PGPR and press mud in chromium contaminated soil. Chemosphere 262:127865

    CAS  PubMed  Google Scholar 

  • Mustafa S, Kabir S, Shabbir U, Batool R (2019) Plant growth promoting rhizobacteria in sustainable agriculture: from theoretical to pragmatic approach. Symbiosis 78(2):115–123

    CAS  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Arshad M, Shahzad S (2006) Variation in growth and ion uptake of maize due to inoculation with plant growth promoting rhizobacteria under salt stress. Soil Environ 25(2):78–84

    Google Scholar 

  • Nadeem SM, Ahmad M, Zahir ZA, Javaid A, Ashraf M (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv 32(2):429–448

    PubMed  Google Scholar 

  • Nadeem SM, Ahmad M, Naveed M, Imran M, Zahir ZA, Crowley DE (2016) Relationship between in vitro characterization and comparative efficacy of plant growth-promoting rhizobacteria for improving cucumber salt tolerance. Arch Microbiol 198(4):379–387

    CAS  PubMed  Google Scholar 

  • Nadeem SM, Ahmad M, Tufail MA, Asghar HN, Nazli F, Zahir ZA (2021) Appraising the potential of EPS-producing rhizobacteria with ACC-deaminase activity to improve growth and physiology of maize under drought stress. Physiol Plant 172(2):463–476

    CAS  PubMed  Google Scholar 

  • Nautiyal CS, Govindarajan R, Lavania M, Pushpangadan P (2008) Novel mechanism of modulating natural antioxidants in functional foods: involvement of plant growth promoting rhizobacteria NRRL B-30488. J Agric Food Chem 56(12):4474–4481

    CAS  PubMed  Google Scholar 

  • Nautiyal CS, Srivastava S, Chauhan PS, Seem K, Mishra A, Sopory SK (2013) Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress. Plant Physiol Biochem 66:1–9

    CAS  PubMed  Google Scholar 

  • Navada S, Vadstein O, Gaumet F, Tveten AK, Spanu C, Mikkelsen Ø, Kolarevic J (2020) Biofilms remember: osmotic stress priming as a microbial management strategy for improving salinity acclimation in nitrifying biofilms. Water Res 176:115732

    CAS  PubMed  Google Scholar 

  • Naveed M, Mustafa A, Azhar SQTA, Kamran M, Zahir ZA, Núñez-Delgado A (2020) Burkholderia phytofirmans PsJN and tree twigs derived biochar together retrieved Pb-induced growth, physiological and biochemical disturbances by minimizing its uptake and translocation in mung bean (Vigna radiata L.). J Environ Manag 257:109974

    CAS  Google Scholar 

  • Nayyar H, Kaur S, Singh S, Upadhyaya HD (2006) Differential sensitivity of Desi (small-seeded) and Kabuli (large-seeded) chickpea genotypes to water stress during seed filling: effects on accumulation of seed reserves and yield. J Sci Food Agric 86(13):2076–2082

    CAS  Google Scholar 

  • Naz I, Bano A, Ul-Hassan T (2009) Isolation of phytohormones producing plant growth promoting rhizobacteria from weeds growing in Khewra salt range, Pakistan and their implication in providing salt tolerance to Glycine max L. Afr J Biotechnol 8:21

    Google Scholar 

  • Neilands J (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270(45):26723–26726

    CAS  PubMed  Google Scholar 

  • Ngumbi E, Kloepper J (2016) Bacterial-mediated drought tolerance: current and future prospects. Appl Soil Ecol 105:109–125

    Google Scholar 

  • Nie L, Shah S, Rashid A, Burd GI, Dixon DG, Glick BR (2002) Phytoremediation of arsenate contaminated soil by transgenic canola and the plant growth-promoting bacterium Enterobacter cloacae CAL2. Plant Physiol Biochem 40(4):355–361

    CAS  Google Scholar 

  • Niinemets Ü (2010) Mild versus severe stress and BVOCs: thresholds, priming and consequences. Trends Plant Sci 15(3):145–153

    CAS  PubMed  Google Scholar 

  • Nikalje GC, Nikam TD, Suprasanna P (2017) Looking at halophytic adaptation to high salinity through genomics landscape. Curr Genomics 18:542–552

    CAS  PubMed  PubMed Central  Google Scholar 

  • Niklas KJ, Kutschera U (2012) Plant development, auxin, and the subsystem incompleteness theorem. Front Plant Sci 3:37

    PubMed  PubMed Central  Google Scholar 

  • Nishad R, Ahmed T, Rahman VJ, Kareem A (2020) Modulation of plant defense system in response to microbial interactions. Front Microbiol 11:1298

    PubMed  PubMed Central  Google Scholar 

  • Odori C, Ngaira J, Kinyua J, Nyaboga EN (2020) Morphological, genetic diversity and symbiotic functioning of rhizobia isolates nodulating cowpea (Vigna unguiculata L. Walp) in soils of Western Kenya and their tolerance to abiotic stress. Cogent Food Agric 6(1):1853009

    Google Scholar 

  • Olias R, Eljakaoui Z, Li JUN, De Morales PA, Marin-Manzano MC, Pardo JM, Belver A (2009) The plasma membrane Na+/H+ antiporter SOS1 is essential for salt tolerance in tomato and affects the partitioning of Na+ between plant organs. Plant Cell Environ 32(7):904–916

    CAS  PubMed  Google Scholar 

  • Ongena M, Duby F, Rossignol F, Fauconnier ML, Dommes J, Thonart P (2004) Stimulation of the lipoxygenase pathway is associated with systemic resistance induced in bean by a nonpathogenic Pseudomonas strain. Mol Plant Microbe Interact 17(9):1009–1018

    CAS  PubMed  Google Scholar 

  • Orhan F (2016) Alleviation of salt stress by halotolerant and halophilic plant growth-promoting bacteria in wheat (Triticum aestivum). Braz J Microbiol 47:621–627

    CAS  PubMed  PubMed Central  Google Scholar 

  • Orlandini V, Emiliani G, Fondi M, Maida I, Perrin E, Fani R (2014) Network analysis of plasmidomes: the Azospirillum brasilense Sp245 case. Int J Evol Biol. https://doi.org/10.1155/2014/951035

    Article  PubMed  PubMed Central  Google Scholar 

  • Orozco-Mosqueda M, Duan J, DiBernardo M, Zetter E, Campos-García J, Glick BR, Santoyo G (2019) The production of ACC deaminase and trehalose by the plant growth promoting bacterium Pseudomonas sp. UW4 synergistically protect tomato plants against salt stress. Front Microbiol 10:1392

    PubMed  PubMed Central  Google Scholar 

  • O’sullivan DJ, O’Gara F (1992) Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol Rev 56(4):662–676

    CAS  PubMed  PubMed Central  Google Scholar 

  • Otieno N, Lally RD, Kiwanuka S, Lloyd A, Ryan D, Germaine KJ, Dowling DN (2015) Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front Microbiol 6:745

    Google Scholar 

  • Oyedele AO, Ogunbanwo TS (2014) Antifungal activities of Bacillus subtilis isolated from some condiments and soil. Afr J Microbiol Res 8(18):1841–1849

    Google Scholar 

  • Pan T, Liu M, Kreslavski VD, Zharmukhamedov SK, Nie C, Yu M, Kuznetsov VV, Allakhverdiev SI, Shabala S (2021) Non-stomatal limitation of photosynthesis by soil salinity. Crit Rev Environ Sci Technol 51(8):791–825

    CAS  Google Scholar 

  • Pandey R, Lal MK, Vengavasi K (2018) Differential response of hexaploid and tetraploid wheat to interactive effects of elevated [CO2] and low phosphorus. Plant Cell Rep 37(9):1231–1244

    CAS  PubMed  Google Scholar 

  • Pathak A, Sharma A, Johri B, Sharma A (2004) Pseudomonas strain GRP3 induces systemic resistance to sheath blight in rice. International Rice Research Notes

  • Patten CL, Glick BR (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68(8):3795–3801

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paul D, Lade H (2014) Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: a review. Agron Sustain Dev 34(4):737–752

    Google Scholar 

  • Paul MJ, Primavesi LF, Jhurreea D, Zhang Y (2008) Trehalose metabolism and signaling. Annu Rev Plant Biol 59:417–441

    CAS  PubMed  Google Scholar 

  • Pérez-de-Luque A, Tille S, Johnson I, Pascual-Pardo D, Ton J, Cameron DD (2017) The interactive effects of arbuscular mycorrhiza and plant growth-promoting rhizobacteria synergistically enhance host plant defences against pathogens. Sci Rep 7(1):1–10

    Google Scholar 

  • Pérez-Montaño F, Alías-Villegas C, Bellogín R, Del Cerro P, Espuny M, Jiménez-Guerrero I, López-Baena FJ, Ollero F, Cubo T (2014) Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production. Microbiol Res 169(5–6):325–336

    PubMed  Google Scholar 

  • Persello-Cartieaux F, Nussaume L, Robaglia C (2003) Tales from the underground: molecular plant–rhizobacteria interactions. Plant Cell Environ 26(2):189–199

    CAS  Google Scholar 

  • Pieterse CM, Van Wees SC, Van Pelt JA, Knoester M, Laan R, Gerrits H, Weisbeek PJ, Van Loon LC (1998) A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10(9):1571–1580

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pieterse CM, Ton J, Van Loon L (2001) Cross-talk between plant signalling pathways: boost or burden. AgBiotechNet 3:1–8

    Google Scholar 

  • Pieterse CM, Zamioudis C, Berendsen RL, Weller DM, Van Wees SC, Bakker PA (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375

    CAS  PubMed  Google Scholar 

  • Pieterse CM, Berendsen RL, de Jonge R, Stringlis IA, Van Dijken AJ, Van Pelt JA, Bakker PA (2021) Pseudomonas simiae WCS417: star track of a model beneficial rhizobacterium. Plant Soil 461(1):245–263

    CAS  Google Scholar 

  • Pii Y, Penn A, Terzano R, Crecchio C, Mimmo T, Cesco S (2015) Plant-microorganism-soil interactions influence the Fe availability in the rhizosphere of cucumber plants. Plant Physiol Biochem 87:45–52

    CAS  PubMed  Google Scholar 

  • Podile AR, Kishore GK (2007) Plant growth-promoting rhizobacteria. In: Gnanamanickam SS (ed) Plant-associated bacteria. Springer, Dordrecht, pp 195–230

    Google Scholar 

  • Prabhukarthikeyan SR, Keerthana U, Raguchander T (2018) Antibiotic-producing Pseudomonas fluorescens mediates rhizome rot disease resistance and promotes plant growth in turmeric plants. Microbiol Res 210:65–73

    CAS  PubMed  Google Scholar 

  • Prakash V, Singh VP, Tripathi DK, Sharma S, Corpas FJ (2019) Crosstalk between nitric oxide (NO) and abscisic acid (ABA) signalling molecules in higher plants. Environ Exp Bot 161:41–49

    CAS  Google Scholar 

  • Pramanik K, Mitra S, Sarkar A, Soren T, Maiti TK (2017) Characterization of cadmium-resistant Klebsiella pneumoniae MCC 3091 promoted rice seedling growth by alleviating phytotoxicity of cadmium. Environ Sci Pollut Res 24(31):24419–24437

    CAS  Google Scholar 

  • Pramanik K, Mandal S, Banerjee S, Ghosh A, Maiti TK, Mandal NC (2021) Unraveling the heavy metal resistance and biocontrol potential of Pseudomonas sp. K32 strain facilitating rice seedling growth under Cd stress. Chemosphere 274:129819

    CAS  PubMed  Google Scholar 

  • Prathap M, Kumari BR (2015) A critical review on plant growth promoting rhizobacteria. J Plant Pathol 6(4):266

    Google Scholar 

  • Preston GM (2004) Plant perceptions of plant growth-promoting Pseudomonas. Philos Trans R Soc Lond B 359(1446):907–918

    CAS  Google Scholar 

  • Pršić J, Ongena M (2020) Elicitors of plant immunity triggered by beneficial bacteria. Front. Plant Sci. 11:594530

    PubMed  PubMed Central  Google Scholar 

  • Qi Z, Spalding EP (2004) Protection of plasma membrane K+ transport by the salt overly sensitive1 Na+-H+ antiporter during salinity stress. Plant Physiol 136(1):2548–2555

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qian Y, Tan DX, Reiter RJ, Shi H (2015) Comparative metabolomic analysis highlights the involvement of sugars and glycerol in melatonin-mediated innate immunity against the bacterial pathogen in Arabidopsis. Sci Rep 5:1–11

    Google Scholar 

  • Qingwen Z, Ping L, Gang W, Qingnian C (1998) On the biochemical mechanism of induced resistance of cotton to cotton bollworm by cutting off young seedling at plumular axis. Sheng Li Xue Bao 25(3):209–212

    Google Scholar 

  • Qurashi AW, Sabri AN (2012) Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress. Braz J Microbiol 43:1183–1191

    CAS  PubMed  PubMed Central  Google Scholar 

  • Radhakrishnan R, Hashem A, AbdAllah EF (2017) Bacillus: a biological tool for crop improvement through bio-molecular changes in adverse environments. Front Physiol 8:667

    PubMed  PubMed Central  Google Scholar 

  • Radzki W, Mañero FG, Algar E, García JL, García-Villaraco A, Solano BR (2013) Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture. Antonie Van Leeuwenhoek 104(3):321–330

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman M, Sabir AA, Mukta JA, Khan MMA, Mohi-Ud-Din M, Miah MG, Rahman M, Islam MT (2018) Plant probiotic bacteria Bacillus and Paraburkholderia improve growth, yield and content of antioxidants in strawberry fruit. Sci Rep 8:2504

    PubMed  PubMed Central  Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28(3):142–149

    CAS  PubMed  Google Scholar 

  • Ramirez-Prado JS, Abulfaraj AA, Rayapuram N, Benhamed M, Hirt H (2018) Plant immunity: from signaling to epigenetic control of defense. Trends Plant Sci 23(9):833–844

    CAS  PubMed  Google Scholar 

  • Ranasinghe C, De Costa DM, Basnayake BMVS, Gunasekera DM, Priyadharshani S, Navagamuwa NVR (2018) Potential of rhizobacterial pseudomonas and bacillus spp. to manage papaya ringspot virus disease of papaya (Carica papaya (l.)

  • Rashid M, Khan A, Hossain MT, Chung YR (2017) Induction of systemic resistance against aphids by endophytic Bacillus velezensis YC7010 via expressing PHYTOALEXIN DEFICIENT4 in Arabidopsis. Front Plant Sci 8:211

    PubMed  PubMed Central  Google Scholar 

  • Rathore P (2015) A review on approaches to develop plant growth promoting rhizobacteria. J Plant Physiol 176:47–54

    Google Scholar 

  • Rima FS, Biswas S, Sarker PK, Islam MR, Seraj ZI (2018) Bacteria endemic to saline coastal belt and their ability to mitigate the effects of salt stress on rice growth and yields. Ann Microbiol 68(9):525–535

    CAS  Google Scholar 

  • Roberson EB, Firestone MK (1992) Relationship between desiccation and exopolysaccharide production in a soil Pseudomonas sp. Appl Environ Microbiol 58(4):1284–1291

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rocha I, Ma Y, Carvalho MF, Magalhães C, Janoušková M, Vosátka M, Oliveira RS (2019) Seed coating with inocula of arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria for nutritional enhancement of maize under different fertilisation regimes. Arch Agron Soil Sci 65(1):31–43

    CAS  Google Scholar 

  • Rojas-Tapias D, Moreno-Galván A, Pardo-Díaz S, Obando M, Rivera D, Bonilla R (2012) Effect of inoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize (Zea mays). Appl Soil Ecol 61:264–272

    Google Scholar 

  • Roychoudhury A, Tripathi DK (2019) Molecular plant abiotic stress: biology and biotechnology. Wiley, New York

    Google Scholar 

  • Ruzzi M, Aroca R (2015) Plant growth-promoting rhizobacteria act as biostimulants in horticulture. Sci Hortic 196:124–134

    CAS  Google Scholar 

  • Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner H-Y, Hunt MD (1996) Systemic acquired resistance. Plant Cell 8(10):1809

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu CM, Farag MA, Hu C-H, Reddy MS, Kloepper JW, Paré PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134(3):1017–1026

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu CM, Kim J, Choi O, Kim SH, Park CS (2006) Improvement of biological control capacity of Paenibacillus polymyxa E681 by seed pelleting on sesame. Biol Control 39(3):282–289

    Google Scholar 

  • Saberi-Riseh R, Fathi F, Moradzadeh-Eskandari M (2020) Effect of some Pseudomonas fluorescens and Bacillus subtilis strains on osmolytes and antioxidants of cucumber under salinity stress. J Crop Prot 9(1):1–16

    Google Scholar 

  • Sabry SR, Saleh SA, Batchelor CA, Jones J, Jotham J, Webster G, Kothari SL, Davey MR, Cocking EC (1997) Endophytic establishment of Azorhizobium caulinodans in wheat. Proc R Soc Lond Ser B 264(1380):341–346

    Google Scholar 

  • Saharan BS, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res 21(1):30

    Google Scholar 

  • Sandhya V, Ali SZ, Grover M, Reddy G, Venkateswarlu B (2010) Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growth Regul 62(1):21–30

    CAS  Google Scholar 

  • Santoro MV, Bogino PC, Nocelli N, Cappellari LdR, Giordano WF, Banchio E (2016) Analysis of plant growth-promoting effects of fluorescent Pseudomonas strains isolated from Mentha piperita rhizosphere and effects of their volatile organic compounds on essential oil composition. Front Microbiol 7:1085

    PubMed  PubMed Central  Google Scholar 

  • Santoyo G, Moreno-Hagelsieb G, del Carmen O-M, Glick BR (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99

    CAS  PubMed  Google Scholar 

  • Saremba BM, Tymm FJM, Baethke K, Rheault MR, Sherif SM, Saxena PK, Murch SJ (2017) Plant signals during beetle (Scolytus multistriatus) feeding in American elm (Ulmus americana Planch). Plant Signal Behav 12:e1296997

    PubMed  PubMed Central  Google Scholar 

  • Sarkar A, Ghosh PK, Pramanik K, Mitra S, Soren T, Pandey S, Mondal MH, Maiti TK (2018) A halotolerant Enterobacter sp. displaying ACC deaminase activity promotes rice seedling growth under salt stress. Res Microbiol 169(1):20–32

    CAS  PubMed  Google Scholar 

  • Sarode P, Rane M, Chaudhari B, Chincholkar S (2007) Screening for siderophore producing PGPR from black cotton soils of North Maharashtra. Curr Trends Biotechnol Pharm 1(1):96–105

    CAS  Google Scholar 

  • Sasidharan R, Hartman S, Liu Z, Martopawiro S, Sajeev N, van Veen H, Yeung E, Voesenek LA (2018) Signal dynamics and interactions during flooding stress. Plant Physiol 176(2):1106–1117

    CAS  PubMed  Google Scholar 

  • Saxena SC, Kaur H, Verma P, Petla BP, Andugula VR, Majee M (2013) Osmoprotectants: potential for crop improvement under adverse conditions. In: Tuteja N, Singh Gill S (eds) Plant acclimation to environmental stress. Springer, New York, pp 197–232

    Google Scholar 

  • Sayyed R, Chincholkar S (2009) Siderophore-producing Alcaligenes feacalis exhibited more biocontrol potential vis-à-vis chemical fungicide. Curr Microbiol 58(1):47–51

    CAS  PubMed  Google Scholar 

  • Sayyed R, Naphade B, Chincholklar S (2007) Siderophore producing A. feacalis promoted the growth of Safed musali and Ashwagandha. J Med Aromat Plants 29:1–5

    Google Scholar 

  • Schippers B (1988) Biological control of pathogens with rhizobacteria. Philos Trans R Soc Lond B 318(1189):283–293

    Google Scholar 

  • Sehrawat A, Sindhu SS, Glick BR (2022) Hydrogen cyanide production by soil bacteria: biological control of pests and promotion of plant growth in sustainable agriculture. Pedosphere 32(1):15–38

    CAS  Google Scholar 

  • Selvakumar G, Panneerselvam P, Ganeshamurthy AN (2012) Bacterial mediated alleviation of abiotic stress in crops. In: Maheshwari DK (ed) Bacteria in agrobiology: stress management. Springer, Berlin, pp 205–224

    Google Scholar 

  • Sgroy V, Cassán F, Masciarelli O, Del Papa MF, Lagares A, Luna V (2009) Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera. Appl Microbiol Biotechnol 85(2):371–381

    CAS  PubMed  Google Scholar 

  • Shaharoona B, Arshad M, Zahir ZA, Khalid A (2006) Performance of Pseudomonas spp. containing ACC-deaminase for improving growth and yield of maize (Zea mays L.) in the presence of nitrogenous fertilizer. Soil Biol Biochem 38(9):2971–2975

    CAS  Google Scholar 

  • Sharif R, Ryu CM (2018a) Biogenic volatile compounds for plant disease diagnosis and health improvement. Plant Pathol J 34:459–469

    Google Scholar 

  • Sharif R, Ryu CM (2018b) Sniffing bacterial volatile compounds for healthier plants. Curr Opin Plant Biol 44:88–97

    Google Scholar 

  • Sharma A, Pathak A, Sahgal M, Meyer J-M, Wray V, Johri BN (2007) Molecular characterization of plant growth promoting rhizobacteria that enhance peroxidase and phenylalanine ammonia-lyase activities in chile (Capsicum annuum L.) and tomato (Lycopersicon esculentum Mill.). Arch Microbiol 188(5):483–494

    CAS  PubMed  Google Scholar 

  • Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus 2(1):1–14

    Google Scholar 

  • Sharma S, Kulkarni J, Jha B (2016) Halotolerant rhizobacteria promote growth and enhance salinity tolerance in peanut. Front Microbiol 7:1600

    PubMed  PubMed Central  Google Scholar 

  • Sharma S, Chandra S, Kumar A, Bindraban P, Saxena AK, Pande V, Pandey R (2019) Foliar application of iron fortified bacteriosiderophore improves growth and grain Fe concentration in wheat and soybean. Indian J Microbiol 59(3):344–350

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw LJ, Morris P, Hooker JE (2006) Perception and modification of plant flavonoid signals by rhizosphere microorganisms. Environ Microbiol 8:1867–1880

    CAS  PubMed  Google Scholar 

  • Sheffield J, Wood EF (2008) Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Clim Dyn 31(1):79–105

    Google Scholar 

  • Sheffield J, Wood EF, Roderick ML (2012) Little change in global drought over the past 60 years. Nature 491(7424):435–438

    CAS  PubMed  Google Scholar 

  • Shi H, Ishitani M, Kim C, Zhu JK (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci USA 97(12):6896–6901

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi H, Chen Y, Tan DX, Reiter RJ, Chan Z, He C (2015) Melatonin induces nitric oxide and the potential mechanisms relate to innate immunity against bacterial pathogen infection in Arabidopsis. J Pineal Res 59:102–108

    CAS  PubMed  Google Scholar 

  • Shifa H, Gopalakrishnan C, Velazhahan R (2018) Management of late leaf spot (Phaeoisariopsis personata) and root rot (Macrophomina phaseolina) diseases of groundnut (Arachis hypogaea L.) with plant growth-promoting rhizobacteria, systemic acquired resistance inducers and plant extracts. Phytoparasitica. 46(1):19–30

    Google Scholar 

  • Sijilmassi B, Filali-Maltouf A, Boulahyaoui H, Kricha A, Boubekri K, Udupa S, Kumar S, Amri A (2021) Assessment of genetic diversity and symbiotic efficiency of selected rhizobia strains nodulating lentil (Lens culinaris Medik). Plants 10(1):15

    CAS  Google Scholar 

  • Singh RP, Jha PN (2016) The multifarious PGPR Serratia marcescens CDP-13 augments induced systemic resistance and enhanced salinity tolerance of wheat (Triticum aestivum L.). PLoS ONE 11(6):e0155026

    PubMed  PubMed Central  Google Scholar 

  • Singh RK, Malik N, Singh S (2013) Improved nutrient use efficiency increases plant growth of rice with the use of IAA-overproducing strains of endophytic Burkholderia cepacia strain RRE25. Microb Ecol 66(2):375–384

    CAS  PubMed  Google Scholar 

  • Singh RK, Singh P, Li HB, Song QQ, Guo DJ, Solanki MK, Li YR (2020) Diversity of nitrogen-fixing rhizobacteria associated with sugarcane: a comprehensive study of plant-microbe interactions for growth enhancement in Saccharum spp. BMC Plant Biol 20(1):1–21

    CAS  Google Scholar 

  • Singh Y, Lal N (2016) Isolation and Characterization of PGPR from wheat (Triticum aestivum) rhizosphere and their plant growth promoting traits in vitro. Front Microbiol 6 (198)

  • Sivasakthi S, Usharani G, Saranraj P (2014) Biocontrol potentiality of plant growth promoting bacteria (PGPR)-Pseudomonas fluorescens and Bacillus subtilis: a review. Afr J Agric Res 9(16):1265–1277

    Google Scholar 

  • Skirycz A, Inzé D (2010) More from less: plant growth under limited water. Curr Opin Biotechnol 21(2):197–203

    CAS  PubMed  Google Scholar 

  • Smith DL, Praslickova D, Ilangumaran G (2015) Inter-organismal signaling and management of the phytomicrobiome. Front Plant Sci 6:722

    PubMed  PubMed Central  Google Scholar 

  • Smith DL, Gravel V, Yergeau E (2017) Signaling in the phytomicrobiome. Front Plant Sci 8:611

    PubMed  PubMed Central  Google Scholar 

  • Sokolova M, Akimova G, Vaishlya O (2011) Effect of phytohormones synthesized by rhizosphere bacteria on plants. Appl Biochem Microbiol 47(3):274–278

    CAS  Google Scholar 

  • Sorty AM, Meena KK, Choudhary K, Bitla UM, Minhas PS, Krishnani KK (2016) Effect of plant growth promoting bacteria associated with halophytic weed (Psoralea corylifolia L.) on germination and seedling growth of wheat under saline conditions. Appl Biochem Biotechnol 180(5):872–882

    CAS  PubMed  Google Scholar 

  • Spaepen S, Bossuyt S, Engelen K, Marchal K, Vanderleyden J (2014) Phenotypical and molecular responses of Arabidopsis thaliana roots as a result of inoculation with the auxin-producing bacterium Azospirillum brasilense. New Phytol 201(3):850–861

    CAS  PubMed  Google Scholar 

  • Stearns JC, Shah S, Greenberg BM, Dixon DG, Glick BR (2005) Tolerance of transgenic canola expressing 1-aminocyclopropane-1-carboxylic acid deaminase to growth inhibition by nickel. Plant Physiol Biochem 43(7):701–708

    CAS  PubMed  Google Scholar 

  • Stefanescu IA (2015) Bioaccumulation of heavy metals by Bacillus megaterium from phosphogypsum waste. Sci Study Res 16(1):93

    CAS  Google Scholar 

  • Steiner F, da Silva OC, Zoz T, Zuffo A, de Freitas R (2020) Co-Inoculation of common bean with Rhizobium and Azospirillum enhance the drought tolerance. Russ J Plant Physiol 67(5):923–932

    CAS  Google Scholar 

  • Stout MJ, Zehnder GW, Baur ME (2002) Potential for the use of elicitors of plant resistance in arthropod management programs. Arch Insect Biochem Physiol 51(4):222–235

    CAS  PubMed  Google Scholar 

  • Stringlis IA, Yu K, Feussner K, De Jonge R, Van Bentum S, Van Verk MC, Berendsen RL, Bakker PA, Feussner I, Pieterse CM (2018) MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health. Proc Natl Acad Sci USA 115(22):E5213–E5222

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sukweenadhi J, Balusamy SR, Kim YJ, Lee CH, Kim YJ, Koh SC, Yang DC (2018) A growth-promoting bacteria, Paenibacillus yonginensis DCY84T enhanced salt stress tolerance by activating defense-related systems in Panax ginseng. Front Plant Sci 9:813

    PubMed  PubMed Central  Google Scholar 

  • Suryadi Y, Susilowati DN, Fauziah F (2019) Management of plant diseases by PGPR-mediated induced resistance with special reference to tea and rice crops. Plant growth promoting Rhizobacteria for sustainable stress management:65–110

  • Tahir MA, Aziz T, Farooq M, Sarwar G (2012) Silicon-induced changes in growth, ionic composition, water relations, chlorophyll contents and membrane permeability in two salt-stressed wheat genotypes. Arch Agron Soil Sci 58(3):247–256

    CAS  Google Scholar 

  • Takishita Y, Charron JB, Smith DL (2018) Biocontrol rhizobacterium Pseudomonas sp. 23S induces systemic resistance in tomato (Solanum lycopersicum L.) against bacterial canker Clavibacter michiganensis subsp. michiganensis. Front Microbiol 9:2119

    PubMed  PubMed Central  Google Scholar 

  • Tewari S, Arora NK (2016) Fluorescent Pseudomonas sp. PF17 as an efficient plant growth regulator and biocontrol agent for sunflower crop under saline conditions. Symbiosis 68(1):99–108

    CAS  Google Scholar 

  • Tewari S, Arora NK (2018) Role of salicylic acid from Pseudomonas aeruginosa PF23 EPS+ in growth promotion of sunflower in saline soils infested with phytopathogen Macrophomina phaseolina. Environ Sustain 1(1):49–59

    Google Scholar 

  • Tewari S, Sharma S (2020) Rhizobial exopolysaccharides as supplement for enhancing nodulation and growth attributes of Cajanus cajan under multi-stress conditions: a study from lab to field. Soil Tillage Res 198:104545

    Google Scholar 

  • Timmusk S, Abd El-Daim IA, Copolovici L, Tanilas T, Kännaste A, Behers L, Nevo E, Seisenbaeva G, Stenström E, Niinemets Ü (2014) Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles. PLoS ONE 9(5):e96086–e96086

    PubMed  PubMed Central  Google Scholar 

  • Tinna D, Garg N, Sharma S, Pandove G, Chawla N (2020) Utilization of plant growth promoting rhizobacteria as root dipping of seedlings for improving bulb yield and curtailing mineral fertilizer use in onion under field conditions. Sci Hortic 270:109432

    CAS  Google Scholar 

  • Tiwari RK, Lal MK, Kumar R, Chourasia KN, Naga KC, Kumar D, Das SK, Zinta G (2020) Mechanistic insights on melatonin-mediated drought stress mitigation in plants. Physiol Plant 172(2):1212–1226

    Google Scholar 

  • Tiwari RK, Lal MK, Kumar R, Mangal V, Altaf MA, Sharma S, Singh B, Kumar M (2021) Insight into melatonin-mediated response and signaling in the regulation of plant defense under biotic stress. Plant Mol Biol 109:385–399

    PubMed  Google Scholar 

  • Trenberth KE, Dai A, Van Der Schrier G, Jones PD, Barichivich J, Briffa KR, Sheffield J (2014) Global warming and changes in drought. Nat Clim Chang 4(1):17–22

    Google Scholar 

  • Tsukanova K, Meyer J, Bibikova T (2017) Effect of plant growth-promoting Rhizobacteria on plant hormone homeostasis. S Afr J Bot 113:91–102

    CAS  Google Scholar 

  • Turan M, Kıtır N, Alkaya Ü, Günes A, Tüfenkçi Ş, Yıldırım E, Nikerel E (2016) Making soil more accessible to plants: the case of plant growth promoting rhizobacteria. Plant Growth 1:61–69

    Google Scholar 

  • Tyagi S, Mulla SI, Lee KJ, Chae JC, Shukla P (2018) VOCs-mediated hormonal signaling and crosstalk with plant growth promoting microbes. Crit Rev Biotechnol 38(8):1277–1296

    CAS  PubMed  Google Scholar 

  • Upadhyay S, Singh D (2015) Effect of salt-tolerant plant growth-promoting rhizobacteria on wheat plants and soil health in a saline environment. Plant Biol 17(1):288–293

    CAS  PubMed  Google Scholar 

  • Urooj F, Farhat H, Tariq A, Moin S, Sohail N, Sultana V, Ehteshamul-Haque S (2021) Role of endophytic Penicillium species and Pseudomonas monteilii in inducing the systemic resistance in okra against root rotting fungi and their effect on some physiochemical properties of okra fruit. J Appl Microbiol 130(2):604–616

    CAS  PubMed  Google Scholar 

  • Vacheron J, Desbrosses G, Bouffaud ML, Touraine B, Moënne-Loccoz Y, Muller D et al (2013) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci 4:356

    PubMed  PubMed Central  Google Scholar 

  • Vaddepalli P, Fulton L, Wieland J, Wassmer K, Schaeffer M, Ranf S, Schneitz K (2017) The cell wall-localized atypical β-1, 3 glucanase ZERZAUST controls tissue morphogenesis in Arabidopsis thaliana. Development 144(12):2259–2269

    CAS  PubMed  Google Scholar 

  • Vaishnav A, Varma A, Tuteja N, Choudhary DK (2016) PGPR-mediated amelioration of crops under salt stress. In: Choudhary D, Varma A, Tuteja N (eds) Plant-microbe interaction: an approach to sustainable agriculture. Springer, Singapore, pp 205–226

    Google Scholar 

  • Valverde A, Burgos A, Fiscella T, Rivas R, Velazquez E, Rodríguez-Barrueco C, Cervantes E, Chamber M, Igual J-M Differential effects of coinoculations with Pseudomonas jessenii PS06 (a phosphate-solubilizing bacterium) and Mesorhizobium ciceri C-2/2 strains on the growth and seed yield of chickpea under greenhouse and field conditions. In: First International Meeting on Microbial Phosphate Solubilization, 2007. Springer, pp 43–50

  • Van Assche F, Clijsters H (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ 13(3):195–206

    Google Scholar 

  • Van Loon L, Bakker P, Pieterse C (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36(1):453–483

    PubMed  Google Scholar 

  • Van Peer R, Niemann G, Schippers B (1991) Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS 417 r. Phytopathology 81(7):728–734

    Google Scholar 

  • Vandana UK, Singha B, Gulzar A, Mazumder P (2020) Molecular mechanisms in plant growth promoting bacteria (PGPR) to resist environmental stress in plants. In: Molecular Aspects of Plant Beneficial Microbes in Agriculture. Elsevier, pp 221–233

  • Vardharajula S, Zulfikar Ali S, Grover M, Reddy G, Bandi V (2011) Drought-tolerant plant growth promoting Bacillus spp.: effect on growth, osmolytes, and antioxidant status of maize under drought stress. J Plant Interact 6(1):1–14

    CAS  Google Scholar 

  • Vejan P, Abdullah R, Khadiran T, Ismail S, Nasrulhaq Boyce A (2016) Role of plant growth promoting rhizobacteria in agricultural sustainability—a review. Molecules 21(5):573

    PubMed  PubMed Central  Google Scholar 

  • Vera-Estrella R, Barkla BJ, García-Ramírez L, Pantoja O (2005) Salt stress in Thellungiella halophila activates Na+ transport mechanisms required for salinity tolerance. Plant Physiol 139(3):1507–1517

    CAS  PubMed  PubMed Central  Google Scholar 

  • Verbon EH, Liberman LM (2016) Beneficial microbes affect endogenous mechanisms controlling root development. Trends Plant Sci 21(3):218–229

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255(2):571–586

    CAS  Google Scholar 

  • Vidhyasekaran P, Rabindran R, Muthamilan M, Nayar K, Rajappan K, Subramanian N, Vasumathi K (1997) Development of a powder formulation of Pseudomonas fluorescens for control of rice blast. Plant Pathol 46(3):291–297

    Google Scholar 

  • Vidoz ML, Loreti E, Mensuali A, Alpi A, Perata P (2010) Hormonal interplay during adventitious root formation in flooded tomato plants. Plant J 63(4):551–562

    CAS  PubMed  Google Scholar 

  • Vielma JR, Bonilla E, Chacín-Bonilla L, Mora M, Medina-Leendertz S, Bravo Y (2014) Efects of melatonin on oxidative stress, and resistance to bacterial, parasitic, and viral infections: a review. Acta Trop 137:31–38

    CAS  PubMed  Google Scholar 

  • Villena J, Kitazawa H, Van Wees S, Pieterse CM, Takahashi H (2018) Receptors and signaling pathways for recognition of bacteria in livestock and crops: prospects for beneficial microbes in healthy growth strategies. Front Immunol 9:2223

    PubMed  PubMed Central  Google Scholar 

  • Voegele RT, Wirsel S, Möll U, Lechner M, Mendgen K (2006) Cloning and characterization of a novel invertase from the obligate biotroph Uromyces fabae and analysis of expression patterns of host and pathogen invertases in the course of infection. Mol Plant Microbe Interact 19(6):625–634

    CAS  PubMed  Google Scholar 

  • Vurukonda SSKP, Vardharajula S, Shrivastava M, SkZ A (2016) Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol Res 184:13–24

    PubMed  Google Scholar 

  • Wang S, Fu J (2011) Insights into auxin signaling in plant–pathogen interactions. Front Plant Sci 2:74

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang CJ, Yang W, Wang C, Gu C, Niu DD, Liu HX, Wang YP, Guo JH (2012) Induction of drought tolerance in cucumber plants by a consortium of three plant growth-promoting rhizobacterium strains. PLoS ONE 7(12):e52565

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YY, Yin QS, Qu Y, Li GZ, Hao L (2018) Arbuscular mycorrhiza-mediated resistance in tomato against Cladosporium fulvum-induced mould disease. J Phytopathol 166(1):67–74

    CAS  Google Scholar 

  • Wani P, Khan M, Zaidi A (2007) Co-inoculation of nitrogen-fixing and phosphate-solubilizing bacteria to promote growth, yield and nutrient uptake in chickpea. Acta Agron Hung 55(3):315–323

    CAS  Google Scholar 

  • Wei G, Kloepper JW, Tuzun S (1991) Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology 81(11):1508–1512

    Google Scholar 

  • Wittenmayer L, Merbach W (2005) Plant responses to drought and phosphorus deficiency: contribution of phytohormones in root-related processes. J Plant Nutr Soil Sci 168(4):531–540

    CAS  Google Scholar 

  • Woods TS (2003) Pesticide formulations. Encyclopedia of agrochemicals. Wiley, New York

    Google Scholar 

  • Wu SJ, Ding L, Zhu JK (1996) SOS1, a genetic locus essential for salt tolerance and potassium acquisition. Plant Cell 8(4):617–627

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu G, Liu Y, Xu Y, Zhang G, Shen Q, Zhang R (2018) Exploring elicitors of the beneficial rhizobacterium Bacillus amyloliquefaciens SQR9 to induce plant systemic resistance and their interactions with plant signaling pathways. Mol Plant Microbe Inter 31(5):560–567

    CAS  Google Scholar 

  • Xu H, Jiang X, Zhan K, Cheng X, Chen X, Pardo JM, Cui D (2008) Functional characterization of a wheat plasma membrane Na+/H+ antiporter in yeast. Arch Biochem Biophys 473(1):8–15

    CAS  PubMed  Google Scholar 

  • Xu L, Wu C, Oelmueller R, Zhang W (2018) Role of phytohormones in Piriformospora indica-induced growth promotion and stress tolerance in plants: more questions than answers. Front Microbiol 9:1646

    PubMed  PubMed Central  Google Scholar 

  • Yadav M, Dubey MK, Upadhyay RS (2021) Systemic resistance in chilli pepper against anthracnose (caused by Colletotrichum truncatum) induced by Trichoderma harzianum, Trichoderma asperellum and Paenibacillus dendritiformis. J Fungi 7(4):307

    CAS  Google Scholar 

  • Yadegari M, Rahmani HA, Noormohammadi G, Ayneband A (2010) Plant growth promoting rhizobacteria increase growth, yield and nitrogen fixation in Phaseolus vulgaris. J Plant Nutr 33(12):1733–1743

    CAS  Google Scholar 

  • Yang Y, Guo Y (2018a) Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytol 217:523–539

    CAS  PubMed  Google Scholar 

  • Yang Y, Guo Y (2018b) Unraveling salt stress signaling in plants. J Integr Plant Biol 60:796–804

    CAS  PubMed  Google Scholar 

  • Yang J, Kloepper JW, Ryu C-M (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14(1):1–4

    CAS  PubMed  Google Scholar 

  • Yang A, Akhtar SS, Iqbal S, Amjad M, Naveed M, Zahir ZA, Jacobsen SE (2016) Enhancing salt tolerance in quinoa by halotolerant bacterial inoculation. Funct Plant Biol 43(7):632–642

    CAS  PubMed  Google Scholar 

  • Yang X, Lu M, Wang Y, Wang Y, Liu Z, Chen S (2021) Response mechanism of plants to drought stress. Horticulturae 7(3):50

    Google Scholar 

  • Yang C, Dolatabadian A, Fernando WD (2022) The wonderful world of intrinsic and intricate immunity responses in plants against pathogens. Can J Plant Pathol 44(1):1–20

    Google Scholar 

  • Yasin NA, Akram W, Khan WU, Ahmad SR, Ahmad A, Ali A (2018) Halotolerant plant-growth promoting rhizobacteria modulate gene expression and osmolyte production to improve salinity tolerance and growth in Capsicum annum L. Environ Sci Pollut Res 25(23):23236–23250

    CAS  Google Scholar 

  • Youssef SA, Tartoura KA, Greash AG (2018) Serratia proteamaculans mediated alteration of tomato defense system and growth parameters in response to early blight pathogen Alternaria solani infection. Physiol Mol Plant Pathol 103:16–22

    CAS  Google Scholar 

  • Yue Y, Zhang M, Zhang J, Duan L, Li Z (2012) SOS1 gene overexpression increased salt tolerance in transgenic tobacco by maintaining a higher K+/Na+ ratio. J Plant Physiol 169(3):255–261

    CAS  PubMed  Google Scholar 

  • Zafar-ul-Hye M, Danish S, Abbas M, Ahmad M, Munir TM (2019) ACC deaminase producing PGPR Bacillus amyloliquefaciens and Agrobacterium fabrum along with biochar improve wheat productivity under drought stress. Agronomy 9(7):343

    CAS  Google Scholar 

  • Zahir Z, Munir A, Asghar H, Shaharoona B, Arshad M (2008) Effectiveness of rhizobacteria containing ACC deaminase for growth promotion of peas (Pisum sativum) under drought conditions. J Microbiol Biotechnol 18(5):958–963

    CAS  PubMed  Google Scholar 

  • Zand AD, Mikaeili Tabrizi A, Vaezi Heir A (2020) Application of titanium dioxide nanoparticles to promote phytoremediation of Cd-polluted soil: contribution of PGPR inoculation. Bioremediat J 24(2–3):171–189

    CAS  Google Scholar 

  • Zehnder G, Kloepper J, Yao C, Wei G (1997) Induction of systemic resistance in cucumber against cucumber beetles (Coleoptera: Chrysomelidae) by plant growth-promoting rhizobacteria. J Econ Entomol 90(2):391–396

    Google Scholar 

  • Zerrouk IZ, Benchabane M, Khelifi L, Yokawa K, Ludwig-Müller J, Baluska F (2016) A Pseudomonas strain isolated from date-palm rhizospheres improves root growth and promotes root formation in maize exposed to salt and aluminum stress. J Plant Physiol 191:111–119

    CAS  PubMed  Google Scholar 

  • Zhang Q, Dai W (2019) Plant response to salinity stress. Stress physiology of woody plants. CRC Press, Boca Raton, pp 155–173

    Google Scholar 

  • Zhang S, Zheng X, Reiter RJ, Feng S, Wang Y, Liu S, Jin L, Li Z, Datla R, Ren M (2017a) Melatonin attenuates potato late blight by disrupting cell growth, stress tolerance, fungicide susceptibility and homeostasis of gene expression in Phytophthora infestans. Front Plant Sci 8:1993

    PubMed  PubMed Central  Google Scholar 

  • Zhang JH, Huang J, Hussain S, Zhu LF, Cao XC, Zhu CQ, Zhang H (2021) Increased ammonification, nitrogenase, soil respiration and microbial biomass N in the rhizosphere of rice plants inoculated with rhizobacteria. J Integr Agric 20(10):2781–2796

    CAS  Google Scholar 

  • Zhang Q, Huber H, Beljaars SJ, Birnbaum D, de Best S, de Kroon H, Visser EJ (2017b) Benefits of flooding-induced aquatic adventitious roots depend on the duration of submergence: linking plant performance to root functioning. Ann. Bot. 5 mcx049

  • Zhao H, Xu L, Su T, Jiang Y, Hu L, Ma F (2015) Melatonin regulates carbohydrate metabolism and defenses against Pseudomonas syringae pv. tomato DC3000 infection in Arabidopsis thaliana. J Pineal Res 59:109–119

    CAS  PubMed  Google Scholar 

  • Zhao L, Chen L, Gu P, Zhan X, Zhang Y, Hou C, Wu Z, Wu YF, Wang QC (2019) Exogenous application of melatonin improves plant resistance to virus infection. Plant Pathol 68:1287–1295

    CAS  Google Scholar 

  • Zhao X, Liu X, Zhao H, Ni Y, Lian Q, Qian H, Ma Q (2021) Biological control of Fusarium wilt of sesame by Penicillium bilaiae 47M–1. Biol Control 158:104601

    CAS  Google Scholar 

  • Zhou C, Ma Z, Zhu L, Xiao X, Xie Y, Zhu J, Wang J (2016) Rhizobacterial strain Bacillus megaterium BOFC15 induces cellular polyamine changes that improve plant growth and drought resistance. Int J Mol Sci 17(6):976

    PubMed  PubMed Central  Google Scholar 

  • Zhu JK, Liu J, Xiong L (1998) Genetic analysis of salt tolerance in Arabidopsis: evidence for a critical role of potassium nutrition. Plant Cell 10(7):1181–1191

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

NG conceived the idea, preparation of outline of the draft, and finalization of the manuscript. PB contributed to writing of the manuscript. SAA contributed to writing of the manuscript. AJR contributed to writing of the manuscript. MF conceived the idea, preparation of outline of the draft, and finalization of the manuscript.

Corresponding author

Correspondence to Nirmali Gogoi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Handling Editor: Chetan Keswani.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borah, P., Gogoi, N., Asad, S.A. et al. An Insight into Plant Growth-Promoting Rhizobacteria-Mediated Mitigation of Stresses in Plant. J Plant Growth Regul 42, 3229–3256 (2023). https://doi.org/10.1007/s00344-022-10787-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-022-10787-y

Keywords

Navigation