Skip to main content
Log in

Plant Abiotic and Biotic Stress Alleviation: From an Endophytic Microbial Perspective

  • Review Article
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Plant abiotic and biotic stresses can change plant-pest synergism by augmenting host plant vulnerability to pests and lessening competitive capability with weed plants. Climate change, such as a shift in precipitation, intensifies the damaging effects of stresses, undesirably impacting plant growth and survival. However, we have yet to reach a clear answer as the outcome usually depends on complex interactions and agro-climatic conditions. To alleviate plant stresses, more in-depth work is required to elucidate the underlying mechanisms and exploit thereof. In this review, we have confined ourselves to the domain of the role played by endophytic microorganisms to alleviate plant stress. In contrast, some biotic stresses may alter plant response to abiotic stress factors. Hence, methodical analyses are indispensable for understanding the effect of abiotic and biotic stress conditions on crop development and agronomic production. Endophytic microbes have drawn interest owing to their plant growth stimulating attributes and valuable performances related to plant responses under abiotic and biotic stress environments. Endophytes produce secondary metabolites to defend the host plant under stressful climatic conditions and against phytopathogens. Understanding plant resilience mechanisms will assist in the commercialized biotechnological development of endophytes in crop improvement. There is still much scope to explore factors and elucidate mechanisms that result in unquestionably recognized beneficial effects of endophytes. This review article bridges the gap mentioned and focuses on the role played by endophytes in plant development and their stimulating diverse mechanisms for tolerating diverse abiotic and biotic stresses in the host.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Not applicable.

Code availability

Not applicable.

References

  1. Chaudhry S, Sidhu GPS (2022) Climate change regulated abiotic stress mechanisms in plants: a comprehensive review. Plant Cell Rep 41(1):1–31. https://doi.org/10.1007/s00299-021-02759-5

    Article  CAS  PubMed  Google Scholar 

  2. Zhang H, Zhu J, Gong Z, Zhu JK (2022) Abiotic stress responses in plants. Nat Rev Genet 23(2):104–119. https://doi.org/10.1038/s41576-021-00413-0

    Article  CAS  PubMed  Google Scholar 

  3. Javaid MH, Khan AR, Salam A, Neelam A, Azhar W, Ulhassan Z, Gan Y (2022) Exploring the adaptive responses of plants to abiotic stresses using transcriptome data. Agriculture 12:211. https://doi.org/10.3390/agriculture12020211

    Article  CAS  Google Scholar 

  4. Imran QM, Falak N, Hussain A, Mun BG, Yun BW (2021) Abiotic stress in plants; stress perception to molecular response and role of biotechnological tools in stress resistance. Agronomy 11:1579. https://doi.org/10.3390/agronomy11081579

    Article  CAS  Google Scholar 

  5. Hanaka A, Majewska M, Jaroszuk-Sciseł J (2022) Study of the influence of abiotic and biotic stress factors on horticultural plants. Horticulturae 8:6. https://doi.org/10.3390/horticulturae8010006

    Article  Google Scholar 

  6. Jana SK, Islam MM, Mandal S (2022) Endophytic microbiota of rice and their collective impact on host fitness. Curr Microbiol 79(2):37. https://doi.org/10.1007/s00284-021-02737-w

    Article  CAS  PubMed  Google Scholar 

  7. Nautiyal CS, Srivastava S, Cahuhan PS, Seem K, Mishra A, Sopory SK (2013) Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress. Plant Physiol Biochem 66:1–9. https://doi.org/10.1016/j.plaphy.2013.01.020

    Article  CAS  PubMed  Google Scholar 

  8. Evelin H, Devi TS, Gupta S, Kapoor R (2019) Mitigation of salinity stress in plants by arbuscular mycorrhizal symbiosis: current understanding and new challenges. Front Plant Sci 10:470. https://doi.org/10.3389/fpls.2019.00470

    Article  PubMed  PubMed Central  Google Scholar 

  9. Raza A, Tabassum J, Zahid Z, Charagh S, Bashir S, Barmukh R, Khan RSA, Barbosa F Jr, Zhang C, Chen H, Zhuang W, Varshney RK (2022) Advances in “Omics” approaches for improving toxic metals/metalloids tolerance in plants. Front Plant Sci 12:794373. https://doi.org/10.3389/fpls.2021.794373

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kurniawan A, Chuang HW (2022) Rhizobacterial Bacillus mycoides functions in stimulating the antioxidant defence system and multiple phytohormone signalling pathways to regulate plant growth and stress tolerance. J Appl Microbiol 132(2):1260–1274. https://doi.org/10.1111/jam.15252

    Article  CAS  PubMed  Google Scholar 

  11. Denyer T, Timmermans MCP (2022) Crafting a blueprint for single-cell RNA sequencing. Trends Plant Sci 27(1):92–103. https://doi.org/10.1016/j.tplants.2021.08.016

    Article  CAS  PubMed  Google Scholar 

  12. Kumar A, Droby S, Singh VK, Singh SK, White JF (2020) Entry, colonization, and distribution of endophytic microorganisms in plants. In: Kumar A, Radhakrishnan EK (eds) Microbial endophytes. Woodhead Publishing, Cambridge, pp 1–33

    Google Scholar 

  13. Chlebek D, Pinski A, Żur J, Michalska J, Hupert-Kocurek K (2020) Genome mining and evaluation of the biocontrol potential of Pseudomonas fluorescens brz63, a new endophyte of oilseed rape (Brassica napus L.) against fungal pathogens. Int J Mol Sci 22:8740. https://doi.org/10.3390/ijms21228740

    Article  CAS  Google Scholar 

  14. Mengistu AA (2020) Endophytes: Colonization, behaviour, and their role in defense mechanism. Int J Microbiol. https://doi.org/10.1155/2020/6927219

    Article  PubMed  PubMed Central  Google Scholar 

  15. Orozco-Mosqueda MDC, Santoyo G (2021) Plant-microbial endophytes interactions: scrutinizing their beneficial mechanisms from genomic explorations. Curr Plant Biol 25:1–10. https://doi.org/10.1016/j.cpb.2020.100189

    Article  CAS  Google Scholar 

  16. Robles-Acosta IN, Chacón-Hernández JC, Torres-Acosta RI, Landeros-Flores J, Vanoye-Eligio V, Arredondo-Valdés R (2019) Entomopathogenic fungi as biological control agents of Phyllocoptruta oleivora (Prostigmata: Eriophyidae) under greenhouse conditions. Florida Entomol 102(2):303–308. https://doi.org/10.1653/024.102.0203

    Article  CAS  Google Scholar 

  17. Aguilera-Sammaritano J, Caballero J, Deymié M, Rosa M, Vazquez F, Pappano D, Lechner B, González-Teuber M (2021) Dual effects of entomopathogenic fungi on control of the pest Lobesiabotrana and the pathogenic fungus Eutypellamicrotheca on grapevine. Biol Res 54:44. https://doi.org/10.1186/s40659-021-00367-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bolivar-Anillo HJ, González-Rodríguez VE, Cantoral JM, García-Sánchez D, Collado IG, Garrido C (2021) Endophytic bacteria Bacillus subtilis, isolated from Zea mays, as potential biocontrol agent against Botrytis cinerea. Biology 10(6):492. https://doi.org/10.3390/biology10060492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fontana DC, Paula S, Torres AG, Souza VHM, Pascholati SF, Schmidt D, Neto DD (2021) Endophytic fungi: biological control and induced resistance to phytopathogens and abiotic stresses. Pathogens 10(5):570. https://doi.org/10.3390/pathogens10050570

    Article  PubMed  PubMed Central  Google Scholar 

  20. Cosoveanu A, Chowdhary K, Cabrera R, Sharma S (2021) Role of phytohormones producing fungal endophytes in plantmicrobial interactions under stress. In: Patil RH, Maheshwari VL (eds) Endophytes. Springer, Singapore

    Google Scholar 

  21. Ganie SA, Bhat JA, Devoto A (2021) The influence of endophytes on rice fitness under environmental stresses. Plant Mol Biol. https://doi.org/10.1007/s11103-021-01219-8

    Article  PubMed  PubMed Central  Google Scholar 

  22. Suebrasri T, Harada H, Jogloy S, Ekprasert J, Boonlue S (2020) Auxin-producing fungal endophytes promote growth of sunchoke. Rhizosphere 16:100271. https://doi.org/10.1016/j.rhisph.2020.100271

    Article  Google Scholar 

  23. Jahn L, Hofmann U, Ludwig-Müller U (2021) Indole-3-acetic acid is synthesized by the endophyte Cyanodermellaasteris via a tryptophan dependent and independent way and mediates the interaction with a non-host plant. Int J Mol Sci 22(5):26–51. https://doi.org/10.3390/ijms22052651

    Article  CAS  Google Scholar 

  24. Falade AO, Adewole KE, Ekundayo TC (2021) Aptitude of endophytic microbes for production of novel biocontrol agents and industrial enzymes towards agro-industrial sustainability. Beni-Suef Univ J Basic Appl Sci 10:61–68. https://doi.org/10.1186/s43088-021-00146-3

    Article  Google Scholar 

  25. Abdelshafy-Mohamad OA, Ma JB, Liu YH, Zhang D, Hua S, Bhute S, Hedlund BP, Li WJ, Li L (2020) Beneficial endophytic bacterial populations associated with medicinal plant Thymus vulgaris alleviate salt stress and confer resistance to Fusarium oxysporum. Front Plant Sci 11:47. https://doi.org/10.3389/fpls.2020.00047

    Article  PubMed  PubMed Central  Google Scholar 

  26. Putri ND, Sulistyowati L, Aini LQ, Muhibuddin A, Trianti I (2022) Screening of endophytic fungi as potential antagonistic agents of Pyricularia oryzae and evaluation of their ability in producing hydrolytic enzymes. Biodiversitas 23:1048–1057. https://doi.org/10.13057/biodiv/d230248

    Article  Google Scholar 

  27. Mei C, Chretien RL, Amaradasa BS, He Y, Turner A, Lowman S (2021) Characterization of phosphate solubilizing bacterial endophytes and plant growth promotion in vitro and in greenhouse. Microorganisms 9(9):1935. https://doi.org/10.3390/microorganisms9091935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Varga T, Hixson KK, Ahkami AH, Sher AW, Barnes ME, Chu RK, Battu AK, Nicora CD, Winkler TE, Reno LR, Fakra SC, Antipova O, Parkinson DY, Hall JR, Doty SL (2020) Endophyte-promoted phosphorus solubilization in Populus. Front Plant Sci 11:567918. https://doi.org/10.3389/fpls.2020.567918

    Article  PubMed  PubMed Central  Google Scholar 

  29. Matos ADM, Gomes ICP, Nietsche S, Xavier AA, Gomes WS, Neto JADS, Pereira MCT (2017) Phosphate solubilization by endophytic bacteria isolated from banana trees. Ann Braz Acad Sci 89(4):2945–2954. https://doi.org/10.1590/0001-3765201720160111

    Article  CAS  Google Scholar 

  30. Baghel V, Thakur JK, Yadav SS, Manna MC, Mandal A, Shirale AO, Sharma P, Sinha NK, Mohanty M, Singh AB, Patra AK (2020) Phosphorus and potassium solubilization from rock minerals by endophytic Burkholderia sp. strain fdn2–1 in soil and shift in diversity of bacterial endophytes of corn root tissue with crop growth stage. Geomicrobiol J 37(6):550–563. https://doi.org/10.1080/01490451.2020.1734691

    Article  CAS  Google Scholar 

  31. Chen J, Zhao G, Wei Y, Dong Y, Hou L, Jiao R (2021) Isolation and screening of multifunctional phosphate solubilizing bacteria and its growth-promoting effect on Chinese fir seedlings. Sci Rep 11:9081. https://doi.org/10.1038/s41598-021-88635-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yadav AN, Kour D, Kaur T, Devi R, Yadav A (2022) Endophytic fungal communities and their biotechnological implications for agro-environmental sustainability. Folia Microbiol. https://doi.org/10.1007/s12223-021-00939-0

    Article  Google Scholar 

  33. Samuel SO, Suzuki K, Asiloglu R, Harada N (2022) Soil-root interface influences the assembly of the endophytic bacterial community in rice plants. Biol Fertil Soils 58:35–48. https://doi.org/10.1007/s00374-021-01611-y

    Article  CAS  Google Scholar 

  34. Singh R, Dubey AK (2018) Diversity and applications of endophytic actinobacteria of plants in special and other ecological niches. Front Microbiol 9:1767. https://doi.org/10.3389/fmicb.2018.01767

    Article  PubMed  PubMed Central  Google Scholar 

  35. Chouhan S, Agrawal L, Prakash A (2022) Amelioration in traditional farming system by exploring the different plant growth-promoting attributes of endophytes for sustainable agriculture. Arch Microbiol 204(2):151. https://doi.org/10.1007/s00203-021-02637-4

    Article  CAS  PubMed  Google Scholar 

  36. Gupta S, Pandey S (2019) ACC deaminase producing bacteria with multifarious plant growth promoting traits alleviates salinity stress in French Bean (Phaseolus vulgaris) plants. Front Microbiol 10:1506. https://doi.org/10.3389/fmicb.2019.01506

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sarapat S, Longtonglang A, Umnajkitikorn K, Girdthai T, Boonkerd N, Tittabutr P, Teaumroong N (2020) Application of rice endophytic Bradyrhizobium strain SUTN9-2 containing modified ACC deaminase to rice cultivation under water deficit conditions. J Plant Interac 15(1):322–334. https://doi.org/10.1080/17429145.2020.1824028

    Article  CAS  Google Scholar 

  38. Waqas MA, Kaya C, Riaz A, Farooq M, Nawaz I, Wilkes A, Li Y (2019) Potential mechanisms of abiotic stress tolerance in crop plants induced by thiourea. Front Plant Sci 10:1336. https://doi.org/10.3389/fpls.2019.01336

    Article  PubMed  PubMed Central  Google Scholar 

  39. Siddiqui ZS, Wei X, Umar M, Abideen Z, Zulfiqar F, Chen J, Hanif A, Dawar S, Dias DA, Yasmeen R (2022) Scrutinizing the application of saline endophyte to enhance salt tolerance in rice and maize plants. Front Plant Sci 12:770084. https://doi.org/10.3389/fpls.2021.770084

    Article  PubMed  PubMed Central  Google Scholar 

  40. Pal KK, Dey R, Sherathia DN, Devidayal MS, Kumar A, Rupapara RB, Mandaliya M, Rawal P, Bhadania RA, Thomas M, Patel MB, Maida P, Nawade BD, Ahmad S, Dash P, Radhakrishnan T (2021) Alleviation of salinity stress in peanut by application of endophytic bacteria. Front Microbiol 12:650771. https://doi.org/10.3389/fmicb.2021.650771

    Article  PubMed  PubMed Central  Google Scholar 

  41. Chun SC, Paramasivan M, Chandrasekaran M (2018) Proline accumulation influenced by osmotic stress in arbuscular mycorrhizal symbiotic plants. Front Microbiol 9:2525. https://doi.org/10.3389/fmicb.2018.02525

    Article  PubMed  PubMed Central  Google Scholar 

  42. Rouydel Z, Barin M, Rasouli-Sadaghiani MH, Khezri M, Vetukuri RR, Kushwaha S (2021) Harnessing the potential of symbiotic endophytic fungi and plant growth-promoting rhizobacteria to enhance soil quality in saline soils. Processes 9:1810. https://doi.org/10.3390/pr9101810

    Article  CAS  Google Scholar 

  43. Takahashi F, Kuromori T, Urano K, Yamaguchi-Shinozaki K, Shinozaki K (2020) Drought stress responses and resistance in plants: from cellular responses to long distance intercellular communication. Front Plant Sci 11:556972. https://doi.org/10.3389/fpls.2020.556972

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zia R, Nawaz MS, Siddique MJ, Hakim S, Imran A (2021) Plant survival under drought stress: implications, adaptive responses, and integrated rhizosphere management strategy for stress mitigation. Microbiol Res 242:126626. https://doi.org/10.1016/j.micres.2020.126626

    Article  CAS  PubMed  Google Scholar 

  45. Namwongsa J, Jogloy S, Vorasoot N, Boonlue S, Riddech N, Mongkolthanaruk W (2019) Endophytic bacteria improve root traits, biomass and yield of Helianthus tuberosus L. under normal and deficit water conditions. J Microbiol Biotechnol 29(11):1777–1789. https://doi.org/10.4014/jmb.1903.03062

    Article  CAS  PubMed  Google Scholar 

  46. Ratajczak K, Sulewska H, Błaszczyk L, Basińska-Barczak A, Mikołajczak K, Salamon S, Szymańska G, Dryjański L (2020) Growth and photosynthetic activity of selected spelt varieties (Triticum aestivum ssp. spelta L.) cultivated under drought conditions with different endophytic core microbiomes. Int J Mol Sci 21(21):7987. https://doi.org/10.3390/ijms21217987

    Article  CAS  PubMed Central  Google Scholar 

  47. Zhang L, Zhang W, Li Q, Cui R, Wang Z, Wang Y, Zhang YZ, Ding W, Shen X (2020) Deciphering the root endosphere microbiome of the desert plant Alhagi sparsifolia for drought resistance promoting bacteria. Appl Environ Microbiol 86(11):2863–2919. https://doi.org/10.1128/AEM.02863-19

    Article  Google Scholar 

  48. Yasmin H, Bano A, Wilson NL, Nosheen A, Naz R, Hassan MN, Ilyas N, Saleem MH, Noureldeen A, Ahmad P, Kennedy I (2021) Drought-tolerant Pseudomonas sp. showed differential expression of stress-responsive genes and induced drought tolerance in Arabidopsis thaliana. Physiol Plant 174(1):e13497. https://doi.org/10.1111/ppl.13497

    Article  CAS  PubMed  Google Scholar 

  49. Ghabooli M, Kaboosi E (2022) Alleviation of the adverse effects of drought stress using a desert adapted endophytic fungus and glucose in tomato. Rhizosphere 21:100481. https://doi.org/10.1016/j.rhisph.2022.100481

    Article  Google Scholar 

  50. Khan MA, Asaf S, Khan AL, Jan R, Kang SM, Kim KM, Lee IJ (2020) Thermotolerance effect of plant growth promoting Bacillus cereus SA1 on soybean during heat stress. BMC Microbiol 20:175. https://doi.org/10.1186/s12866-020-01822-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hubbard M, Germida JJ, Vujanovic V (2014) Fungal endophytes enhance wheat heat and drought tolerance in terms of grain yield and second-generation seed viability. J Appl Microbiol 116(1):109–122. https://doi.org/10.1111/jam.12311

    Article  CAS  PubMed  Google Scholar 

  52. Ali AH, Abdelrahman M, Radwan U, El-Zayat S, El-Sayed MA (2018) Effect of thermomyces fungal endophyte isolated from extreme hot desert-adapted plant on heat stress tolerance of cucumber. Appl Soil Ecol 124:155–162. https://doi.org/10.1016/j.apsoil.2017.11.004

    Article  Google Scholar 

  53. Ismail HM, Hussain A, Iqbal A, Khan SA, Lee IJ (2020) Aspergillus niger boosted heat stress tolerance in sunflower and soybean via regulating their metabolic and antioxidant system. J Plant Interactions 15(1):223–232. https://doi.org/10.1080/17429145.2020.1771444

    Article  CAS  Google Scholar 

  54. Theocharis A, Bordiec S, Fernandez O, Paquis S, Dhondt-Cordelier S, Baillieul F, Clément C, Barka EA (2012) Burkholderia phytofirmans PsJN primes Vitis vinifera L. and confers a better tolerance to low nonfreezing temperatures. Mol Plant Microbe Interact 25(2):241–249. https://doi.org/10.1094/MPMI-05-11-0124

    Article  CAS  PubMed  Google Scholar 

  55. Mukhtar T, Ali F, Rafique M, Ali J, Afridi MS, Smith D, Mehmood S, Amna SA, Jellani G, Sultan T, Munis FH, Chaudhary HJ (2022) Biochemical characterization and potential of Bacillus safensis strain SCAL1 to mitigate heat stress in Solanum lycopersicum L. J Plant Growth Regul. https://doi.org/10.1007/s00344-021-10571-4

    Article  Google Scholar 

  56. Hamilton CE, Gundel PE, Helander M, Saikkonen K (2012) Endophytic mediation of reactive oxygen species and antioxidant activity in plants: a review. Fungal Diversity 54:1–10. https://doi.org/10.1007/s13225-012-0158-9

    Article  Google Scholar 

  57. Verma SK, Sahu PK, Kumar K, Pal G, Gond SK, Kharwar RN, White JF (2021) Endophyte roles in nutrient acquisition, root system architecture development and oxidative stress tolerance. J Appl Microbiol 131(5):2161–2177. https://doi.org/10.1111/jam.15111

    Article  CAS  PubMed  Google Scholar 

  58. Khan Z, Rho H, Firrincieli A, Hung SH, Luna V, Masciarelli O, Kim SH, Doty SL (2016) Growth enhancement and drought tolerance of hybrid poplar upon inoculation with endophyte consortia. Curr Plant Biol 6:38–47. https://doi.org/10.1016/j.cpb.2016.08.001

    Article  Google Scholar 

  59. Naveed M, Mitter B, Reichenauer TG, Wieczorek K, Sessitsch A (2014) Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp. FD17. Environ Exp Bot 97:30–39. https://doi.org/10.1016/j.envexpbot.2013.09.014

    Article  CAS  Google Scholar 

  60. Abd-Allah EF, Alqarawi AA, Hashem A, Radhakrishnan R, Al-Huqail AA, Al-Otibi FON, Malik JA, Alharbi RI, Egamberdieva D (2018) Endophytic bacterium Bacillus subtilis (BERA 71) improves salt tolerance in chickpea plants by regulating the plant defense mechanisms. J Plant Interact 13:37–44. https://doi.org/10.1080/17429145.2017.1414321

    Article  CAS  Google Scholar 

  61. Matsouri F, Björkman T, Harman GE (2010) Seed treatment with Trichoderma harzianum alleviates biotic, abiotic and physiological stresses in germinating seeds and seedlings. Phytopathol 100(11):1213–1221. https://doi.org/10.1094/PHYTO-03-10-0091

    Article  CAS  Google Scholar 

  62. Ismail I, Hamayun M, Hussain A, Iqbal A, Khan SA, Ahmad A, Gul S, Kim HY, Lee IJ (2022) Stemphylium solani stabilized the physicochemical characteristics of host plant species during stress. Polish J Environ Stud 31(2):1125–1136. https://doi.org/10.15244/pjoes/139300

    Article  CAS  Google Scholar 

  63. Canarini A, Kaiser C, Merchant A, Richter A, Wanek W (2019) Root exudation of primary metabolites: mechanisms and their roles in plant responses to environmental stimuli. Front Plant Sci 10:157. https://doi.org/10.3389/fpls.2019.00157

    Article  PubMed  PubMed Central  Google Scholar 

  64. Muangthong A, Youpensuk S, Rerkasem B (2015) Isolation and characterisation of endophytic nitrogen fixing bacteria in sugarcane. Tropical Life Sci Res 26(1):41–51

    Google Scholar 

  65. Harman GE, Uphoff N (2019) Symbiotic root endophytic soil microbes improve crop productivity and provide environmental benefits. Scientifica. https://doi.org/10.1155/2019/9106395

    Article  PubMed  PubMed Central  Google Scholar 

  66. Passari AK, Mishra VK, Leo VV, Gupta VK, Singh BP (2016) Phytohormone production endowed with antagonistic potential and plant growth promoting abilities of culturable endophytic bacteria isolated from Clerodendrum colebrookianum Walp. Microbiol Res 193:57–73. https://doi.org/10.1016/j.micres.2016.09.006

    Article  CAS  PubMed  Google Scholar 

  67. Singh D, Geat N, Rajawat MVS, Prasanna R, Kar A, Singh AM, Saxena AK (2018) Prospecting endophytes from different Fe or Zn accumulating wheat genotypes for their influence as inoculants on plant growth, yield, and micronutrient content. Annals Microbiol 68:815–833. https://doi.org/10.1007/s13213-018-1388-1

    Article  CAS  Google Scholar 

  68. Verma S, Kumar M, Kumar A, Das S, Chakdar H, Varma A, Saxena AK (2022) Diversity of bacterial endophytes of maize (Zea mays) and their functional potential for micronutrient biofortification. Curr Microbiol 79(1):6. https://doi.org/10.1007/s00284-021-02702-7

    Article  CAS  Google Scholar 

  69. Wan Y, Luo S, Chen J, Xiao X, Chen L, Zeng G, Liu C, He Y (2012) Effect of endophyte infection on growth parameters and Cd induced phytotoxicity of Cd hyperaccumulator Solanum nigrum L. Chemosphere 89(6):743–750

    Article  CAS  Google Scholar 

  70. Soldi E, Casey C, Murphy BR, Hodkinson TR (2020) Funrongal endophytes for grass-based bioremediation: an endophytic consortium isolated from Agrostis stolonifera stimulates the growth of Festuca arundinacea in lead contaminated soil. J Fungi (Basel) 6(4):254. https://doi.org/10.3390/jof6040254

    Article  CAS  Google Scholar 

  71. Syranidou E, Thijs S, Avramidou M, Weyens N, Venieri D, Pintelon I, Vangronsveld J, Kalogerakis N (2018) Responses of the endophytic bacterial communities of Juncus acutus to pollution with metals, emerging organic pollutants and to bioaugmentation with indigenous strains. Front Plant Sci 9:1526. https://doi.org/10.3389/fpls.2018.01526

    Article  PubMed  PubMed Central  Google Scholar 

  72. Yadav S (2019) Isolation of endophytes from castor plant and measuring its activity against heavy metals and pollutants. Int J Adv Res 7(4):761–768. https://doi.org/10.21474/IJAR01/8898

    Article  Google Scholar 

  73. Pietrini I, Grifoni M, Franchi E, Cardaci A, Pedron F, Barbafieri M, Petruzzelli G, Vocciante M (2021) Enhanced lead phytoextraction by endophytes from indigenous plants. Soil Syst 5(3):55. https://doi.org/10.3390/soilsystems5030055

    Article  CAS  Google Scholar 

  74. Ashraf S, Afzal M, Rehman K, Naveed M, Zahir ZA (2018) Plant endophyte synergism in constructed wetlands enhances the remediation of tannery effluent. Water Sci Technol 77(5):1262–1270. https://doi.org/10.2166/wst.2018.004

    Article  CAS  PubMed  Google Scholar 

  75. Papp-Rupar M, Karlstrom A, Passey T, Deakin G, Xu X (2022) The influence of host genotypes on the endophytes in the leaf scar tissues of apple trees and correlation of the endophytes with apple canker (Neonectria ditissima) development. Phytobiomes J. https://doi.org/10.1094/PBIOMES-10-21-0061-R

    Article  Google Scholar 

  76. Ancheeva E, Daletos G, Proksch P (2020) Bioactive secondary metabolites from endophytic fungi. Curr Med Chem 27(11):1836–1854. https://doi.org/10.2174/0929867326666190916144709

    Article  CAS  PubMed  Google Scholar 

  77. Jayaram H, Marigowda V, Saraswathi KJT (2021) Secondary metabolite production and terpenoid biosynthesis in endophytic fungi Cladosporium cladosporioides isolated from wild Cymbopogon martinii (roxb.) wats. Microbiol Res 12:812–828. https://doi.org/10.3390/microbiolres12040059

    Article  Google Scholar 

  78. Liu JM, Wang SS, Zheng X, Jin N, Lu J, Huang YT, Fan B, Wang FZ (2020) Antimicrobial activity against phytopathogens and inhibitory activity on solanine in potatoes of the endophytic bacteria isolated from potato tubers. Front Microbiol 11:570926. https://doi.org/10.3389/fmicb.2020.570926

    Article  PubMed  PubMed Central  Google Scholar 

  79. Yang M, Mavrodi DV, Thomashow LS, Weller DM (2018) Differential response of wheat cultivars to Pseudomonas brassicacearum and take-all decline soil. Phytopathol 108(12):1363–1372. https://doi.org/10.1094/PHYTO-01-18-0024-R

    Article  CAS  Google Scholar 

  80. Pawar S, Chaudhari A, Prabha R, Shukla R, Singh DP (2019) Microbial pyrrolnitrin: natural metabolite with immense practical utility. Biomolecules 9(9):443. https://doi.org/10.3390/biom9090443

    Article  CAS  PubMed Central  Google Scholar 

  81. Trung DQ, Anh LT, Thuy NT, Van DM, Hang TT (2021) Endophytic bacteria isolated from a weed plant as a potential biocontrol agent against stem end rot pathogen of Pitaya in Vietnam. Egypt J Biol Pest Control 31:106. https://doi.org/10.1186/s41938-021-00451-0

    Article  Google Scholar 

  82. Grabka R, Entremont TW, Adams SJ, Walker AK, Tanney JB, Abbasi PA, Ali S (2022) Fungal endophytes and their role in agricultural plant protection against pests and pathogens. Plants 11(3):384. https://doi.org/10.3390/plants11030384

    Article  PubMed  PubMed Central  Google Scholar 

  83. Savary S, Willocquet L, Pethybridge SJ, Esker P, McRoberts N, Nelson A (2019) The global burden of pathogens and pests on major food crops. Nat Ecol Evol 3:430–439. https://doi.org/10.1038/s41559-018-0793-y

    Article  PubMed  Google Scholar 

  84. Russo ML, Scorsetti AC, Vianna MF, Cabello M, Ferreri N, Pelizza S (2019) Endophytic effects of Beauveria bassiana on corn (Zea mays) and its herbivore, Rachiplusia nu (lepidoptera: Noctuidae). Insects 10(4):110. https://doi.org/10.3390/insects10040110

    Article  PubMed Central  Google Scholar 

  85. Mishra PK, Bisht SC, Ruwari P, Subbanna ARNS, Bisht JK, Bhatt JC, Gupta HS (2017) Genetic diversity and functional characterization of endophytic Bacillus thuringiensis isolates from the North Western Indian Himalayas. Ann Microbiol 67:143–155. https://doi.org/10.1007/s13213-016-1244-0

    Article  CAS  Google Scholar 

  86. Chen CY, Huang PH, Yeh KW, Wang SJ (2022) Colonization of Piriformospora indica enhances insect herbivore resistance of rice plants through jasmonic acid- and antioxidant-mediated defense mechanisms. J Plant Int 17(1):9–18. https://doi.org/10.1080/17429145.2021.2008031

    Article  CAS  Google Scholar 

  87. Moslehi S, Pourmehr S, Shirzad A, Khakvar R (2021) Potential of some endophytic bacteria in biological control of root-knot nematode Meloidogyne incognita. Egypt J Biol Pest Control 31:50. https://doi.org/10.1186/s41938-021-00396-4

    Article  Google Scholar 

  88. Muhae-ud-Din G, Moosa A, Ghummen UF, Jabran M, Abbas A, Naveed M, Jabbar A, Ali MA (2018) Host status of commonly planted ornamentals to Meloidogyne incognita and management through endophytic bacteria. Pakistan J Zool 50(4):1393–1402. https://doi.org/10.17582/journal.pjz/2018.50.4.1393.1402

    Article  CAS  Google Scholar 

  89. Hu H, Chen YL, Wang YF, Tang YY, Chen SL, Yan SZ (2017) Endophytic Bacillus cereus effectively controls Meloidogyne incognita on tomato plants through rapid rhizosphere occupation and repellent action. Plant Dis 101:448–455. https://doi.org/10.1094/PDIS-06-16-0871-RE

    Article  CAS  PubMed  Google Scholar 

  90. Maulidia V, Soesanto L, Syamsuddin KK, Hamaguchi T, Hasegawa K, Sriwati R (2020) Secondary metabolites produced by endophytic bacteria against the root-knot nematode (Meloidogyne sp.). Biodiversitas 21:5270–5275. https://doi.org/10.13057/biodiv/d211130

    Article  Google Scholar 

  91. Hoang H, Tran LH, Nguyen TH, Nguyen DAT, Nguyen HHT, Pham NB, Trinh PQ, de Boer T, Brouwer A, Chu HH (2020) Occurrence of endophytic bacteria in Vietnamese robusta coffee roots and their effects on plant parasitic nematodes. Symbiosis 80:75–84. https://doi.org/10.1007/s13199-019-00649-9

    Article  CAS  Google Scholar 

  92. Marques-Pereira C, Proença DN, Morais PV (2022) The role of serratomolide-like amino lipids produced by bacteria of genus Serratia in nematicidal activity. Pathogens 11(2):198. https://doi.org/10.3390/pathogens11020198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Márquez-Dávila K, Arévalo-López L, Gonzáles R, Vega L, Meza M (2020) Trichoderma and Clonostachys as biocontrol agents against Meloidogyne incognita in sacha inchi. Pesquisa Agropecuária Tropi 50:e60890. https://doi.org/10.1590/1983-40632020v5060890

    Article  Google Scholar 

  94. Farhat H, Urooj F, Sohail N, Ansari M, Ehteshamul-Haque S (2022) Evaluation of nematicidal potential of endophytic fungi associated with healthy plants and GC-MS profiling of metabolites of endophytic Fusarium solani. South African J Botany 146:146–161. https://doi.org/10.1016/j.sajb.2021.10.011

    Article  CAS  Google Scholar 

  95. Youssef MM, El-Nagdi WM, Lotfy DE (2020) Evaluation of the fungal activity of Beauveria bassiana, Metarhizium anisopliae and Paecilomyces lilacinus as biocontrol agents against root-knot nematode, Meloidogyne incognita on cowpea. Bull Natl Res Cent 44(1):1–11. https://doi.org/10.1186/s42269-020-00367-z

    Article  Google Scholar 

  96. Nafady NA, Sultan R, El-Zawahry AM, Mostafa YS, Alamri S, Mostafa RG, Hashem M, Hassan EA (2022) Effective and promising strategy in management of tomato root-knot nematodes by Trichoderma harzianum and arbuscular mycorrhizae. Agronomy 12(2):315. https://doi.org/10.3390/agronomy12020315

    Article  CAS  Google Scholar 

  97. Riva V, Mapelli F, Bagnasco A, Mengoni A, Borin S (2022) A metanalysis approach to defining the culturable core of plant endophytic bacterial communities. Appl Environ Microbiol 88(6):e02537-e2621. https://doi.org/10.1128/aem.02537-21

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are thankful to Dr. Vijay Dhasmana, Vice-Chancellor, Swami Rama Himalayan University, for providing the necessary facilities to contribute to this article.

Funding

This work is not supported by any financial support.

Author information

Authors and Affiliations

Authors

Contributions

VK: conceptualized the article, original draft preparation, and data curation; CSN: reviewed, edited, and made final changes to the manuscript. Both the authors checked and certified the final article.

Corresponding author

Correspondence to Vivek Kumar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical Approval

Not applicable.

Research Involving Human and Animal Participants

Not applicable.

Utilization of Plants, Algae, Fungi

Not applicable.

Informed Consent

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V., Nautiyal, C.S. Plant Abiotic and Biotic Stress Alleviation: From an Endophytic Microbial Perspective. Curr Microbiol 79, 311 (2022). https://doi.org/10.1007/s00284-022-03012-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-022-03012-2

Navigation