Skip to main content

Review of Lipid Biomarkers and Signals of Photooxidative Stress in Plants

  • Protocol
  • First Online:
Plant Abiotic Stress Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2642))

Abstract

The degree of unsaturation of plant lipids is high, making them sensitive to oxidation. They thus constitute primary targets of reactive oxygen species and oxidative stress. Moreover, the hydroperoxides generated during lipid peroxidation decompose in a variety of secondary products which can propagate oxidative stress or trigger signaling mechanisms. Both primary and secondary products of lipid oxidation are helpful markers of oxidative stress in plants. This chapter describes a number of methods that have been developed to measure those biomarkers and signals, with special emphasis on the monitoring of photooxidative stress. Depending on their characteristics, those lipid markers provide information not only on the oxidation status of plant tissues but also on the origin of lipid peroxidation, the localization of the damage, or the type of reactive oxygen species involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  2. Li Z, Wakao S, Fischer BB, Niyogi KK (2009) Sensing and responding to excess light. Annu Rev Plant Biol 60:239–260

    Article  CAS  PubMed  Google Scholar 

  3. Khorobrykh S, Havurinne V, Mattila H, Tyystjarvi E (2020) Oxygen and ROS in photosynthesis. Plants 9:91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Koppenol WH (1993) The centennial of the Fenton reaction. Free Radic Biol Med 15:645–651

    Article  CAS  PubMed  Google Scholar 

  5. Fernie AR, Bauwe H (2020) Wasteful, essential, evolutionary stepping stone? The multiple personalities of the photorespiratory pathway. Plant J 102:666–677

    Article  CAS  PubMed  Google Scholar 

  6. Dao O, Kuhner F, Weber APM, Peltier G, Li-Beisson Y (2022) Physiological functions of malate shuttles in plants and algae. Trends Plant Sci 27(5):488–501

    Article  CAS  PubMed  Google Scholar 

  7. Foyer CH, Lelandais M, Kunert KJ (1994) Photooxidative stress in plants. Physiol Plant 92:696–717

    Article  CAS  Google Scholar 

  8. Melotto M, Underwood W, He SY (2008) Role of stomata in plant innate immunity and foliar bacterial diseases. Annu Rev Phytopathol 46:101–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Buckley TN (2019) How do stomata respond to water status? New Phytol 224:21–36

    Article  PubMed  Google Scholar 

  10. Morgan-Kiss RM, Priscu JC, Pocock T, Gudynaite-Savitch L, Huner NPA (2006) Adaptation and acclimation of photosynthetic organisms to permanently cold environment. Microbiol Mol Biol Rev 70:222–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Salvucci ME, Crafts-Brandner SJ (2004) Inhibition of photosynthesis by heat stress: the activation state of Rubisco as a limiting factor in photosynthesis. Physiol Plant 120:179–186

    Article  CAS  PubMed  Google Scholar 

  12. Allakhverdiev SI, Kreslavski VD, Klimov VV, Los DA, Carpentier R, Mohanty P (2008) Heat stress: an overview of molecular responses in photosynthesis. Photosynth Res 98:541–550

    Article  CAS  PubMed  Google Scholar 

  13. Huang W, Hu H, Zhang S-B (2015) Photorespiration plays an important role in the regulation of photosynthetic electron flow under fluctuating light in tobacco plants grown under full sunlight. Front Plant Sci 6:621

    Article  PubMed  PubMed Central  Google Scholar 

  14. D’Alessandro S, Ksas B, Havaux M (2018) Decoding β-cyclocitral-mediated retrograde signaling reveals the role of a detoxification response in plant tolerance to photooxidative stress. Plant Cell 30:2495–2511

    Article  PubMed  PubMed Central  Google Scholar 

  15. Miquel M, Browse J (1992) Arabidopsis mutants deficient in polyunsaturated fatty acid synthesis. Biochemical and genetic characterization of a plant oleoyl-phosphatidylcholine desaturase. J Biol Chem 267:1502–1509

    Article  CAS  PubMed  Google Scholar 

  16. Li-Beisson Y, Shorrosh B, Beisson F, Andersson MX, Arondel V, Bates PD, Baud S, Bird D, Debono A, Durrett TP et al (2013) Acyl-lipid metabolism. Arabidopsis Book 11:e0161

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chapman DJ, Barber J (1986) Analysis of plastoquinone-9 levels in appressed and non-appressed thylakoid membrane regions. Biochim Biophys Acta 850:170–172

    Article  CAS  Google Scholar 

  18. Yalcinkaya T, Uzilday B, Ozgur R, Turkan I, Mano J (2019) Lipid peroxidation-derived reactive carbonyl species (RCS): their interaction with ROS and cellular redox during environmental stresses. Environ Exp Bot 165:139–149

    Article  CAS  Google Scholar 

  19. Bour A, Kruglik SG, Chabanon M, Rangamani P, Puff N, Bonneau S (2019) Lipid unsaturation properties govern the sensitivity of membranes to photoinduced oxidative stress. Biophys J 116:910–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Triantaphylides C, Havaux M (2009) Singlet oxygen: production, detoxification and signaling. Trends Plant Sci 14:219–228

    Article  CAS  PubMed  Google Scholar 

  21. Mène-Saffrané L, Dubugnon L, Chételat A, Stolz S, Gouhier-Darimont C, Farmer EE (2009) Nonenzymatic oxidation of trienoic fatty acids contributes to reactive oxygen species management in Arabidopsis. J Biol Chem 284:1702–1708

    Article  PubMed  Google Scholar 

  22. Mano J, Biswas MS, Sugimoto K (2019) Reactive carbonyl species: a missing link in ROS signaling. Plants (Basel) 8:391

    Google Scholar 

  23. Montillet J-L, Cacas J-L, Garnier L, Montané M-H, Douki T, Bessoule J-J, Polkowska-Kowalczyk L, Maciejewska U, Agnel J-P, Vial A, Triantaphylidès C (2004) The upstream oxylipin profile of Arabidopsis thaliana: a tool to scan for oxidative stresses: lipid peroxidation in Arabidopsis. Plant J 40:439–451

    Article  CAS  PubMed  Google Scholar 

  24. Mueller MJ, Mène-Saffrané L, Grun C, Karg K, Farmer EE (2006) Oxylipin analysis methods. Plant J 45:472–489

    Article  CAS  PubMed  Google Scholar 

  25. Stratton SP, Liebler DC (1997) Determination of singlet oxygen-specific versus radical-mediated lipid peroxidation in photosensitized oxidation of lipid bilayers: effect of beta-carotene and alpha-tocopherol. Biochemistry 36:12911–12920

    Article  CAS  PubMed  Google Scholar 

  26. Triantaphylides C, Krischke M, Hoeberichts FA, Ksas B, Gresser G, Havaux M, Van Breusegem F, Mueller MJ (2008) Singlet oxygen is the major reactive oxygen species involved in photooxidative damage to plants. Plant Physiol 148:960–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gonzalez-Perez S, Gutiérrez J, Garcia-Garcia F, Osuna D, Dopazo J, Lorenzo O, Revuelta JL, Arellano JB (2011) Early transcriptional defense responses in Arabidopsis cell suspensions culture under high-light conditions. Plant Physiol 156:1439–1456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Matringe M, Ksas B, Rey P, Havaux M (2008) Tocotrienols, the unsaturated forms of vitamin E, can function as antioxidants and lipid protectors in tobacco leaves. Plant Physiol 147:764–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ksas B, Havaux M (2022) Determination of ROS-induced lipid peroxidation by HPLC-based quantification of hydroxy polyunsaturated fatty acids. Methods Mol Biol 2526:181–189

    Article  PubMed  Google Scholar 

  30. Oenel A, Fekete A, Krischke M, Faul SC, Gresser G, Havaux M, Mueller MJ, Berger S (2017) Enzymatic and non-enzymatic mechanisms contribute to lipid oxidation during seed aging. Plant Cell Physiol 58:925–933

    Article  CAS  PubMed  Google Scholar 

  31. Boca S, Koestler F, Ksas B, Chevalier A, Leymarie J, Fekete A, Mueller MJ, Havaux M (2014) Arabidopsis lipocalins AtCHL and AtTIL have distinct but overlapping functions essential for lipid protection and seed longevity. Plant Cell Environ 37:368–381

    Article  CAS  PubMed  Google Scholar 

  32. Griffith G, Leverentz M, Silkowski H, Gill N, Sanchez-Serrano JJ (2000) Lipid hydroperoxide levels in plant tissues. J Exp Bot 51:1363–1370

    Article  Google Scholar 

  33. Kumar A, Prasad A, Pospisil P (2020) Formation of α-tocopherol hydroperoxide and α-tocopherol radical: relevance for phoooxidative stress in Arabidopsis. Sci Rep 10:19646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mihaljevic B, Katusin-Razem B, Razem D (1996) The reevaluation of the ferric thiocyanate assay for lipid hydroperoxides with special considerations of the mechanistic aspects of the response. Free Radic Biol Med 21:53–63

    Article  CAS  PubMed  Google Scholar 

  35. Nourooz-Zadeh J, Tajaddini-Sarmadi J, Wolff SP (1994) Measurement of plasma hydroperoxide concentrations by ferrous oxidation-xylenol orange assay in conjunction with triphenylphosphine. Anal Biochem 220:403–409

    Article  CAS  PubMed  Google Scholar 

  36. Hicks M, Gebicki JM (1979) Spectrophotometric method for the determination of lipid hydroperoxides. Anal Biochem 99:249–253

    Article  CAS  PubMed  Google Scholar 

  37. Huang X, Ahn DU (2019) Lipid oxidation and its implications to meat quality and human health. Food Sci Biotechnol 28:1275–1285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310

    Article  CAS  PubMed  Google Scholar 

  39. Singh HP, Kaur S, Mittal S, Batish DR, Kohli RK (2009) Essential oil of Artemisia scoparia inhibits plant growth by generating reactive oxygen species and causing oxidative damage. J Chem Ecol 35:154–162

    Article  CAS  PubMed  Google Scholar 

  40. Fitó M, Covas MI, Lamuela-Raventós RM, Vila J, Torrents L, de la Torre C, Marrugat J (2000) Protective effect of olive oil and its phenolic compounds against low density lipoprotein oxidation. Lipids 35:633–638

    Article  PubMed  Google Scholar 

  41. Mano J (2012) Reactive carbonyl species: their production from lipid peroxides, action in environmental stress, and the detoxification mechanism. Plant Physiol Biochem 59:90–97

    Article  CAS  PubMed  Google Scholar 

  42. Galano JM, Lee YY, Oger C, Vigor C, Vercauteren J, Durand T, Giera M, Lee JC (2017) Isoprostanes, neuroprostanes and phytoprostanes: an overview of 25 years of research in chemistry and biology. Prog Lipid Res 68:83–108

    Article  CAS  PubMed  Google Scholar 

  43. Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  44. Janero DR (1990) Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic Biol Med 9:515–540

    Article  CAS  PubMed  Google Scholar 

  45. Morales M, Munné-Bosch S (2019) Malondialdehyde: facts and artefacts. Plant Physiol 180:1246–1250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Giera M, Lingeman H, Niessen WMA (2012) Recent advancements in the LC- and GC-based analysis of malondialdehyde (MDA). A brief overview. Chromatographia 75:433–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Havaux M, Eymery F, Porfirova S, Rey P, Dörmann P (2005) Vitamin E protects against photoinhibition and photooxidative stress in Arabidopsis thaliana. Plant Cell 172:3451–3469

    Article  Google Scholar 

  48. Roach T, Stöggl W, Baur T, Kranner I (2018) Distress and eustress of reactive electrophiles and relevance to light stress acclimation via stimulation of thiol/disulphide-based redox defences. Free Radic Biol Med 122:65–73

    Article  CAS  PubMed  Google Scholar 

  49. Loreto F, Barta C, Brilli F, Nogues I (2006) On the induction of volatile organic compound emissions by plants as consequence of wounding or fluctuations of light and temperature. Plant Cell Environ 29:1820–1828

    Article  CAS  PubMed  Google Scholar 

  50. Mano J, Tokushige K, Mizoguchi H, Khorobrykh SA (2010) Accumulation of lipid peroxide-derived, toxic α,β-unsaturated aldehydes (E)-2-pentenal, acrolein and (E)-2-hexenal in leaves under photoinhibitory illumination. Plant Biotechnol 27:193–197

    Article  CAS  Google Scholar 

  51. Roach T, Baur T, Stöggl W, Krieger-Liszkay A (2017) Chlamydomonas reinhardtii responding to high light: a role for 2-propenal (acrolein). Physiol Plant 161:75–87

    Article  CAS  PubMed  Google Scholar 

  52. Rac M, Shumbe L, Oger C, Guy A, Vigor C, Ksas B, Durand T, Havaux M (2021) Luminescence imaging of leaf damage induced by lipid peroxidation products and its modulation by β-cyclocitral. Physiol Plant 171:246–259

    Article  CAS  PubMed  Google Scholar 

  53. Ross BM, Glen I (2014) Breath ethane concentrations in healthy volunteers correlate with a systemic marker of lipid peroxidation but not with omega-3 fatty acid availability. Metabolites 4:572–579

    Article  PubMed  PubMed Central  Google Scholar 

  54. Degousée N, Triantaphylidès C, Starek S, Iacazio G, Martini D, Bladier C, Voisine R, Montillet JL (1995) Measurement of thermally produced volatile alkanes: an assay for plant hydroperoxy fatty acid evaluation. Anal Biochem 224:524–531

    Article  PubMed  Google Scholar 

  55. Sarry JE, Montillet JL, Sauvaire Y, Havaux M (1994) The protective function of the xanthophyll cycle in photosynthesis. FEBS Lett 353:147–150

    Article  CAS  PubMed  Google Scholar 

  56. Durand T, Bultel-Poncé V, Guy A, El Fabgour S, Rossi JC, Galano JM (2011) Isoprostanes and phytoprostanes: bioactive lipids. Biochimie 93:52–60

    Article  CAS  PubMed  Google Scholar 

  57. Mueller S, Hilbert B, Dueckershoff K, Roitsch T, Krischke M, Mueller MJ, Berger S (2008) General detoxification and stress responses are mediated by oxidized lipids through TGA transcription factors in Arabidopsis. Plant Cell 20:768–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Golan PJ, Aro E-M (2020) Photosynthetic signalling during high light stress and recovery: targets and dynamics. Phil Trans R Soc B 375:20190406

    Article  Google Scholar 

  59. Loeffler C, Berger S, Guy A, Durand T, Bringmann G, Dreyer M, von Rad U, Durner J, Mueller MJ (2005) B1-phytoprostanes trigger plant defense and detoxification responses. Plant Physiol 137:328–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cash GA, George GA, Bartley JP (1987) A chemiluminescence study of the decomposition of methyl linoleate hydroperoxides on active substrates. Chem Phys Lipids 43:265–282

    Article  CAS  Google Scholar 

  61. Miyazawa T, Fujimoto K, Kinoshita M, Usuki R (1994) Rapid estimation of peroxide content of soybean oil by measuring thermoluminescence. J Am Oil Chem Soc 71:343–345

    Article  CAS  Google Scholar 

  62. Vavilin DV, Ducruet JM (1998) The origin of 115-130°C thermoluminescence bands in chlorophyll-containing material. Photochem Photobiol 68:191–198

    CAS  Google Scholar 

  63. Birtic S, Ksas B, Genty B, Mueller MJ, Triantaphylidès C, Havaux M (2011) Using spontaneous photon emission to image lipid oxidation patterns in plant tissues. Plant J 67:1103–1115

    Article  CAS  PubMed  Google Scholar 

  64. Ducruet JM, Peeva V, Havaux M (2007) Chlorophyll thermofluorescence and thermoluminescence as complementary tools for the study of temperature stress in plants. Photosynth Res 93:159–171

    Article  CAS  PubMed  Google Scholar 

  65. Duran N, Cadenas E (1987) The role of singlet oxygen and triplet carbonyls in biological systems. Rev Chem Intermed 8:147–187

    Article  CAS  Google Scholar 

  66. Havaux M (2003) Spontaneous and thermo-induced photon emission: new methods to detect and quantify oxidative stress in plants. Trends Plant Sci 8:409–413

    Article  CAS  PubMed  Google Scholar 

  67. Ducruet JM, Vavilin D (1999) Chlorophyll high-temperature thermoluminescence emission as an indicator of oxidative stress: perturbating effects of oxygen and leaf water content. Free Radic Res 31(Suppl):S187–S192

    Article  CAS  PubMed  Google Scholar 

  68. Prasad A, Pospísil P (2013) Towards the two-dimensional imaging of spontaneous ultra-weak photon emission from microbial, plant and animal cells. Sci Rep 3:1211

    Article  PubMed  PubMed Central  Google Scholar 

  69. Kobayashi M, Kikuchi D, Okamura H (2009) Imaging of ultraweak photon emission from human body displaying diurnal rhythm. PLoS One 4:e6256

    Article  PubMed  PubMed Central  Google Scholar 

  70. Usui S, Tada M, Kobayashi M (2019) Non-invasive visualization of physiological changes of insects during metamorphosis based on biophoton emission imaging. Sci Rep 9:8576

    Article  PubMed  PubMed Central  Google Scholar 

  71. Brunetti IL, Cilento G, Nassi L (1983) Energy transfer from enzymatically-generated triplet species to acceptors in micelles. Photochem Photobiol 38:511–519

    Article  CAS  Google Scholar 

  72. Bohne C, Campa A, Cilento G, Nassi L, Villablanca M (1986) Chlorophyll: an efficient detector of electronically excited species in biochemical systems. Anal Biochem 155:1–9

    Article  CAS  PubMed  Google Scholar 

  73. Su D, Wang X, Zhang W, Li P, Tang B (2022) Fluorescence imaging for visualizing the bioactive molecules of lipid peroxidation within biological systems. Anal Chem 146:116484

    CAS  Google Scholar 

  74. Kusio J, Litwinienko G (2022) Fluorescent probes for monitoring oxidation of lipids and assessment of antioxidant activity. In: Bravo-Diaz C (ed) Lipid oxidation in food and biological systems. Springer, Cham, pp 49–110

    Chapter  Google Scholar 

  75. Soh N, Ariyoshi T, Fukaminato T, Nakajima H, Nakano K, Imato T (2007) Swallow-tailed perylene derivative: a new tool for fluorescent imaging of lipid hydroperoxides. Org Biomol Chem 5(23):3762–3768

    Article  CAS  PubMed  Google Scholar 

  76. Okimoto Y, Watanabe A, Niki E, Yamashita T, Noguchi N (2000) A novel fluorescent probe diphenyl-1-pyrenylphosphine to follow lipid peroxidation in cell membranes. FEBS Lett 474:137–140

    Article  CAS  Google Scholar 

  77. Ferretti U, Ciura J, Ksas B, Rác M, Sedlářová M, Kruk J, Havaux M, Pospíšil P (2018) Chemical quenching of singlet oxygen by plastoquinols and their oxidation products in Arabidopsis. Plant J 95:848–861

    Article  CAS  Google Scholar 

  78. Mène-Saffrané L, Davoine C, Stolz S, Majcherczyk P, Farmer EE (2007) Genetic removal of tri-unsaturated fatty acids suppresses developmental and molecular phenotypes of an Arabidopsis tocopherol-deficient mutant. Whole-body mapping of malondialdehyde pools in a complex eukaryote. J Biol Chem 282(49):35749–35756

    Article  PubMed  Google Scholar 

  79. Schmid-Siegert E, Loscos J, Farmer EE (2012) Inducible malondialdehyde pools in zones of cell proliferation and developing tissues in Arabidopsis. J Biol Chem 287(12):8954–8962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Vladimirov YA, Sharov VS, Driomina ES, Reznitvhenko AV, Gashev SB (1995) Coumarin derivatives enhance the chemiluminescence accompanying lipid peroxidation. Free Radic Biol Med 18:739–745

    Article  CAS  PubMed  Google Scholar 

  81. Vladimirov YA, Proskurnina EV (2009) Free radicals and cell chemiluminescence. Biochemistry (Mosc) 74:1545–1566

    Article  CAS  PubMed  Google Scholar 

  82. Krieger-Liszkay A (2004) Singlet oxygen production in photosynthesis. J Exp Bot 56:337–346

    Article  PubMed  Google Scholar 

  83. Vass I (2012) Molecular mechanisms of photodamage in the photosystem II complex. Biochim Biophys Acta 1817:209–217

    Article  CAS  PubMed  Google Scholar 

  84. D’Alessandro S, Havaux M (2019) Sensing β-carotene oxidation in photosystem II to master plant stress tolerance. New Phytol 223:1776–1783

    Article  PubMed  Google Scholar 

  85. Edge R, Truscott TG (2018) Singlet oxygen and free radical reactions of retinoids and carotenoids – a review. Antioxidants (Basel) 7:5

    Article  PubMed  Google Scholar 

  86. Ramel F, Birtic S, Cuine S, Triantaphylides C, Ravanat J-L, Havaux M (2012) Chemical quenching of singlet oxygen by carotenoids in plants. Plant Physiol 158:1267–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zbyradowski M, Duda M, Wisniewska-Becker A, Heriyanto, Rajwa W, Fiedor J, Cvetkovic D, Pilch M, Fiedor L (2022) Triplet-driven chemical reactivity of β-carotene and its biological implications. Nat Commun 13:2474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Telfer A, Dhami S, Bishop SM, Phillips D, Barber J (1994) beta-Carotene quenches singlet oxygen formed by isolated photosystem II reaction centers. Biochemistry 33:14469–14474

    Article  CAS  PubMed  Google Scholar 

  89. Dall’Osto L, Lico C, Alric J, Giuliano G, Havaux M, Bassi R (2006) Lutein is needed for efficient chlorophyll triplet quenching in the major LHCII antenna complex of higher plants and effective photoprotection in vivo under strong light. BMC Plant Biol 6:32

    Article  PubMed  PubMed Central  Google Scholar 

  90. Beisel KG, Jahnke S, Hofmann D, Köppchen S, Schurr U, Matsubara S (2010) Continuous turnover of carotenes and chlorophyll a in mature leaves of Arabidopsis revealed by 14CO2 pulse-chase labeling. Plant Physiol 152:2188–2199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ramel F, Birtic S, Ginies C, Soubigou-Taconnat L, Triantaphylides C, Havaux M (2012) Carotenoid oxidation products are stress signals that mediate gene responses to singlet oxygen in plants. Proc Natl Acad Sci U S A 109:5535–5540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zheng X, Yang Y, Al-Babili S (2021) Exploring the diversity and regulation of apocarotenoid metabolic pathways in plants. Front Plant Sci 12:787049

    Article  PubMed  PubMed Central  Google Scholar 

  93. Shumbe L, Bott R, Havaux M (2014) Dihydroactinidiolide, a high light-induced β-carotene derivative that can regulate gene expression and photoacclimation in Arabidopsis. Mol Plant 7:1248–1251

    Article  CAS  PubMed  Google Scholar 

  94. Kaiser S, DiMascio P, Murphy ME, Sies H (1990) Physical and chemical scavenging of singlet molecular oxygen by the tocopherols. Arch Biochem Biophys 277:101–108

    Article  CAS  PubMed  Google Scholar 

  95. Kumar A, Prasad A, Sedlářová M, Kale R, Frankel LK, Sallans L, Bricker TM, Pospíšil P (2021) Tocopherol controls D1 amino acid oxidation by oxygen radicals in photosystem II. Proc Natl Acad Sci U S A 118:e2019246118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Tanno R, Kato S, Shimizu N, Ito J, Sato S, Ogura Y, Sakaino M, Sano T, Eitsuka T, Kuwahara S, Miyazawa T, Nakagawa K (2020) Analysis of oxidation products of α-tocopherol in extra virgin olive oil using liquid chromatography-tandem mass spectrometry. Food Chem 306:125582

    Article  CAS  PubMed  Google Scholar 

  97. Kobayashi N, DellaPenna D (2008) Tocopherol metabolism, oxidation and recycling under high light stress in Arabidopsis. Plant J 55:607–618

    Article  CAS  PubMed  Google Scholar 

  98. Gruszka J, Pawlak A, Kruk J (2008) Tocochromanols, plastoquinol, and other biological prenyllipids as singlet oxygen quenchers – determination of singlet oxygen quenching rate constants and oxidation products. Free Radic Biol Med 45:920–928

    Article  CAS  PubMed  Google Scholar 

  99. Ksas B, Légeret B, Ferretti U, Chevalier A, Pospíšil P, Alric J, Havaux M (2018) The plastoquinone pool outside the thylakoid membrane serves in plant photoprotection as a reservoir of singlet oxygen scavengers. Plant Cell Environ 41:2277–2287

    Article  CAS  PubMed  Google Scholar 

  100. Szymańska R, Kruk J (2010) Plastoquinol is the main prenyllipid synthesized during acclimation to high light conditions in Arabidopsis and is converted to plastochromanol by tocopherol cyclase. Plant Cell Physiol 51:537–545

    Article  PubMed  Google Scholar 

  101. Mène-Saffrané L, Jones AD, DellaPenna D (2010) Plastochromanol-8 and tocopherols are essential lipid-soluble antioxidants during seed desiccation and quiescence in Arabidopsis. Proc Natl Acad Sci U S A 107:17815–17820

    Article  PubMed  PubMed Central  Google Scholar 

  102. Szymańska R, Nowicka B, Kruk J (2014) Hydroxy-plastochromanol and plastoquinone-C as singlet oxygen products during photo-oxidative stress in Arabidopsis. Plant Cell Environ 37:1464–1473

    Article  PubMed  Google Scholar 

  103. Pospisil P, Yamamoto Y (2017) Damage to photosystem II by lipid peroxidation products. Biochim Biophys Acta 1861:457–466

    Article  CAS  Google Scholar 

  104. Maier CS, Chavez J, Wang J, Wu J (2010) Protein adducts of aldehydic lipid peroxidation products identification and characterization of protein adducts using an aldehyde/keto-reactive probe in combination with mass spectrometry. Methods Enzymol 473:305–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Alché JD (2019) A concise appraisal of lipid oxidation and lipoxidation in higher plants. Redox Biol 23:101136

    Article  PubMed  PubMed Central  Google Scholar 

  106. Blair IA (2008) DNA adducts with lipid peroxidation products. J Biol Chem 283:15545–15549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Boerth DW, Eder E, Stauts JR, Wanek P, Wacker M, Gaulitz S, Skypeck D, Pandolfo D, Yashin M (2008) DNA adducts as biomarkers for oxidative and genotoxic stress from pesticides in crop plants. J Agric Food Chem 56:6751–6760

    Article  CAS  PubMed  Google Scholar 

  108. Farmer EE, Mueller MJ (2013) ROS-mediated lipid peroxidation and RES-activated signaling. Annu Rev Plant Biol 64:429–450

    Article  CAS  PubMed  Google Scholar 

  109. Havaux M (2014) Carotenoid oxidation products as stress signals in plants. Plant J 79:597–606

    Article  CAS  PubMed  Google Scholar 

  110. Muench M, Hsin CH, Ferber E, Berger S, Mueller MJ (2016) Reactive electrophilic oxylipins trigger a heat stress-like response through HSFA1 transcription factors. J Exp Bot 67:6139–6148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Moreno JC, Mi J, Alagoz Y, Al-Babili S (2021) Plant apocarotenoids: from retrograde signaling to interspecific communication. Plant J 105:351–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kumar A, Prasad A, Sedlářová M, Ksas B, Havaux M, Pospíšil P (2020) Interplay between antioxidants in response to photooxidative stress in Arabidopsis. Free Radic Biol Med 160:894–907

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work conducted on lipid peroxidation in the author’s laboratory was supported by ECCOREV and the CEA Radiobiology 2019 program. Thanks are due to Pascal Arnoux (CEA Cadarache, France) for help in preparing Fig. 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Havaux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Havaux, M. (2023). Review of Lipid Biomarkers and Signals of Photooxidative Stress in Plants. In: Couée, I. (eds) Plant Abiotic Stress Signaling. Methods in Molecular Biology, vol 2642. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3044-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3044-0_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3043-3

  • Online ISBN: 978-1-0716-3044-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics